
Applied scientists and engineers who
work with data obtained from the real
world know that signals do not exist
without noise. Under ideal conditions,

this noise might decrease to such negligible levels
that for all practical purposes, denoising is not
necessary. Unfortunately, we usually must remove
the noise corrupting a signal to recover that signal
and proceed with further data analysis. However,
should this noise removal take place in the origi-
nal signal (time-space) domain or in a transform
domain? If the latter, should we use the Fourier
transform for the time-frequency domain or the
wavelet transform for the time-scale domain?

Enthusiastic supporters have described the de-
velopment of wavelet transforms as revolutioniz-
ing modern signal and image processing over the
past two decades. Conservative observers, how-
ever, describe this new field as contributing addi-
tional useful tools to a growing toolbox of trans-
forms.1A particular wavelet method called wavelet
shrinkage denoising has caused its zealous advocates
to claim that it “offers all that we might desire of
a technique, from optimality to generality.”2 In-
quiring skeptics, however, might be loath to ac-
cept these claims based on asymptotic theory
without persuasive evidence from real-world ex-
periments. Fortunately, a burgeoning literature is

now addressing these concerns, leading to a more
realistic appraisal of wavelet shrinkage denoising’s
utility. Let’s examine this wavelet method through
a couple of examples and experiments.

A simple explanation and a 1D example

Wavelet shrinkage denoising should not be con-
fused with smoothing (despite the use by some au-
thors of the term smoothing as a synonym for the
term denoising). Whereas smoothing removes high
frequencies and retains low ones, denoising at-
tempts to remove whatever noise is present and re-
tain whatever signal is present regardless of the sig-
nal’s frequency content (for example, when we
denoise noise-corrupted music, we want to pre-
serve both the treble and the bass). Wavelet shrink-
age denoising does involve shrinking (nonlinear
soft thresholding) in the wavelet transform domain,
and consists of three steps: a linear forward wavelet
transform, a nonlinear shrinkage denoising, and a
linear inverse wavelet transform. The nonlinear
shrinking of coefficients in the transform domain
distinguishes this procedure from entirely linear
denoising methods. Furthermore, wavelet shrink-
age denoising is considered a nonparametric
method. Thus, it is distinct from parametric meth-
ods3 in which we must estimate parameters for a
particular model that must be assumed a priori.
(For example, the most commonly cited paramet-
ric method uses least squares to estimate the para-
meters a and b in the model y = ax + b.)

Figure 1 displays a practical 1D example demon-
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strating the three steps of wavelet shrinkage de-
noising with plots of a known test signal with added
noise, the wavelet transform, the denoised wavelet
transform, and the denoised signal estimate. In the
latter, the green curve is the estimate and the red
curve is the difference between this estimate and
the original true signal without noise. WavBox soft-
ware (version 4.5b3)4 generated all results and fig-
ures reported here, using filters from the system-
atized collection of Daubechies wavelets,5 in
particular, the Daubechies Real Orthogonal Least
Asymmetric (DROLA) filters. (See the “Code for
the 1D example” sidebar for further details.)

A more precise definition 
Assume that the observed data

X(t) = S(t) + N(t)

contains the true signal S(t) with additive noise
N(t) as functions in time t to be sampled. Let W(⋅)
and W Ð1(⋅) denote the forward and inverse
wavelet transform operators. Let D(⋅, λ) denote
the denoising operator with soft threshold λ. We
intend to wavelet shrinkage denoise X(t) to recover
Ŝ(t) as an estimate of S(t). Then the three steps

Y = W(X)

Z = D(Y, λ)
Ŝ= W−1(Z) 

summarize the procedure. Of course, this sum-
mary of principles does not reveal the details in-
volving implementation of the operators W or
D, or selection of the threshold λ.

Let’s focus on λ and D. Given threshold λ for
data U (in any arbitrary domain, signal, trans-
form, or otherwise), the rule

D(U, λ) ≡ sgn(U)max(0,  U −λ)

defines nonlinear soft thresholding. The operator
D nulls all values of U for which |U| = λ and
shrinks toward the origin by an amount λ all values
of U for which |U| > λ. It is the latter aspect that
has led to D being called the shrinkage operator in
addition to the soft thresholding operator.

Variations on a theme
How do we determine λ? Let’s say that the data

has sample size n if it is sampled at n points ti such
that Xi ≡ X(ti). Then for an orthogonal W, there
will also be n transform coefficients Yj. If we pre-
fer to use a threshold (such as the minimax thresh-
old or the universal threshold)6 that depends only
on n, then λ can be predetermined and we can use

Figure 1.
Wavelet
shrinkage de-
noising with
‘SUR,’ DROLA
(16; 8), n =
2,048, L = 6.   

Noisy signal (SNR = 7.10 SD) Wavelet transform of noisy signal

Denoised signal (SNR = 13.84 SD) Denoised wavelet transform
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the three-step denoising procedure already de-
scribed. However, if we prefer to use a data-adap-
tive threshold λ = d(U) (such as the threshold se-
lected by Stein’s unbiased risk estimator (SURE))7

that depends not just on n but on U (which again
represents the data in any generic domain), then
we must use a four-step procedure 

Y = W(X)
λ = d(Y)
Z = D(Y, λ)
Ŝ = W−1(Z) 

for wavelet shrinkage denoising. Now we are
distinguishing between the operator d(⋅), which
selects the threshold, and the operator D(⋅, ⋅),
which performs the thresholding.

We won’t review implementation of W here.
Recall, however, that its analysis and synthesis
wavelet filter banks, single-level convolutions and
boundary treatment, and the total number L of it-
erated multiresolution levels8 must specify a
wavelet transform. Thus, we can generate many
different kinds of wavelet shrinkage denoising pro-
cedures by combining different choices for W(⋅)
and d(⋅). If we let D denote either the soft thresh-
olding operator Ds or the hard thresholding op-
erator Dh,6 then by combining choices for W(⋅),

D(⋅,⋅), and d(⋅) we can generate even more differ-
ent kinds of wavelet-based denoising.

David Donoho and other researchers princi-
pally developed denoising by thresholding in the
wavelet domain.6,7,9 They introduced RiskShrink
with the minimax threshold, VisuShrink with the
universal threshold, and discussed both hard and
soft thresholds in a general context that included
ideal denoising in both the wavelet and Fourier
domains.6 They introduced SureShrink with the
SURE threshold, WaveJS with the James-Stein
threshold, and LPJS also with the James-Stein
threshold but in the Fourier domain instead of
the wavelet domain.7 Here, for consistency of
mnemonics, I rename LPJS to FourJS, analo-
gous to WaveJS. Also, I label these various de-
noising procedures respectively RIS, VIS, IWD,
IFD, SUR, WJS, and FJS for use here as abbre-
viations in the text and figure legends.

What distinguishes all these variations?
Clearly, we can classify them by transform do-
main, Fourier or wavelet, as well as by intent of
use. An ideal procedure requires a priori knowl-
edge of the noise, whereas a practical procedure
does not—ideal procedures are only used for
purposes of comparison in theoretical analysis
and simulation experiments. Moreover, we can
classify the procedures according to whether

In the WavBox software library, wavelet shrinkage denois-
ing has been implemented in the wsdenois function. The
following Matlab code generated Figure 1, in which all func-
tions except sprintf are WavBox functions.

signam = ‘Spires’; n = 2048; % initialize

various settings 

styp = ‘STD’; spar = 7; zmf = 0; dtyp = 

‘SUR’; hts = 0; vai = 0;  

setwb(‘MROTYP’,’dwt1’,’FILCLA’,’orth’,’FILTY

P’,’drola’,’ANAPAR’,8);

setwb(‘CONTYP,’’cps,’’PHATYP,’’peak,’’SELSIZ’,

[n,1],’SAMFRE,’n,’DESLEV,’6); 

getwb(‘USESEL’); % verify WavBox settings

S = scaleval(stsignal(signam),

styp,spar,zmf); % scaled test signal

X = addnoise(S); % add Gaussian noise to 

signal

amp = axislims(X); % amplitude limits for 

signal plots

[R,Z,Y] = wsdenois(X,dtyp); % recovered 

signal in R

tit = sprintf(‘Wavelet Shrinkage Denoising: 

%s, %s, %s, %s, L = %g, n = %g’,... 

signam,dtyp,getwb(‘FILNAM’,0),getw

(‘CONTYP’,0),getwb(‘MAXLEV’,0),n);

hax = multplot([2,2],loc,nam,tag,tit); 

% create multiple plot axis handles

tit = sprintf(‘Noisy Signal (SNR = %.2f 

SD)’,esterror(S,X,styp)); 

plotsee(X,[],tit,[],amp,[],[],hax(1,1)); 

% plot signal estimate error

tit = sprintf(‘Denoised Signal (SNR = %.2f 

SD)’,esterror(S,R,styp)); 

plotsee(R,S,tit,[],amp,[],[],hax(2,1));

tit = ‘Wavelet Transform of Noisy Signal’;

plotdwt(Y,hts,vai,[],[],tit,hax(1,2)); % plot dis-

crete wavelet transform

tit = ‘Denoised Wavelet Transform’;

plotdwt(Z,hts,vai,[],[],tit,hax(2,2));

WavBox’s software library has an extensive set of utilities
including the setwb and getwb functions for automatically
configuring and testing the wavelet transform parameters.1

The above Matlab code excerpt produces four subplots in
the figure window and returns the following output from the
getwb function in the command window:

SignalInputDimension = 1 

SignalInputSelectedSize = 2048 x 1 

MappingClass = DSWT 

MappingType = DWT 

MappingSize = 2048 x 1 

MultiResolutOutputClass = DWB 

Code for the 1D example
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they use a single threshold globally for all rele-
vant parts of the transform or multiple thresh-
olds locally for different parts of it (Fourier fre-
quency bands or wavelet multiresolution levels).
For example, VIS is a practical, wavelet-domain,
global threshold procedure in which we use

for all levels l = 1, …, L from fine to
coarse. As another example, SUR is also a prac-
tical wavelet procedure, but it uses a local thresh-
old λl estimated adaptively for each level l. 

A Monte Carlo experiment and a 2D
example

I performed the first Monte Carlo experiment
comparing any of these denoising procedures in
work that was later published in a paper authored
by David Donoho and Iain M. Johnstone.6 Other
authors have since published additional experi-
ments.2 Most of this work has examined four test
signals that Donoho and Johnstone originally
called Doppler, HeaviSine, Blocks, and Bumps.6

Here, I’ve renamed the latter Spires. I could have
also called it Peaks, but not Bumps, which seems
inappropriate because bumps are usually rounded
and not pointed. These four test signals with spa-
tial inhomogeneity—along with two test signals
with fractal regularity called Weierstrass and van

der Waerden—are displayed as the standardized
test signals in Figure 2, with additive white noise
(SNR = 10 dB) in Figure 3, and as the denoised
signal estimates in Figure 4 for one trial of SUR
at n = 1,024.

Figure 5 shows results from multiple trials of all
seven labeled denoising procedures over a range
of values of n in a new Monte Carlo experiment
with plots of SNR in dB versus log2 n. At each
value of n, L is set to the maximum possible for
that n. Another experiment held L constant as n
increased. Both IWD and IFD are ideal proce-
dures requiring a priori knowledge of the noise.
All others are practical procedures in which the
noise must be estimated and the transform coef-
ficients scaled prior to thresholding. Restricting
attention to the practical procedures, SUR, WJS,
and FJS appear to perform well, but it is impossi-
ble to declare any of the procedures as the best un-
der all test cases and sample sizes. However, we
can declare VIS as the worst for all n and all of the
six test signals investigated. If a Fourier-based
method can perform as well as or better than a
wavelet-based method, then these results would
seem to counter the claims of optimality and gen-
erality for wavelet shrinkage denoising mentioned
earlier.

Nevertheless, the theoretical claims of opti-

λ = 2 log n

MultiResolutOutputType = DWT1 

MultiResolutOutputSize = 2048 x 1 

ConvolutionClass = CSFB 

ConvolutionType = CPS 

PhaseShiftType = PEAK 

ExtensionType = C 

MaximumLevel = 6 

ScaleLengths

2048 1

1024 1

512  1

256  1

128  1

64   1

32   1

FilterBankName = DROLA(16;8) 

FilterBankDelay = 15 

FilterBankError = 5.55112e-016 

BiorthogonalityError = 5.55112e-016 

OrthogonalityError = 7.77156e-016 

SingleLevelConvolError = 6.90015e-016 

MultiLevelMappingError = 1.26636e-015

Simply demonstrating a call to wsdenois does not reveal
much about its internal workings. The following code excerpt
shows the relevant calls that operate inside wsdenois in the
case when the threshold depends only on n and no rescaling is
performed prior to thresholding.

t = estthrsh(n,ten); % ten is threshold estimator

name 

Y = dwt(X); Z = Y; 

for l = levels,

for b = blocks, 

[i,j] = tabilc(l,b); % table of indices to 

levels blocks cells 

Z(i,j) = thrshold(Z(i,j),t,trn); % trn is 

threshold rule name

end,

end,

R = idwt(Z); % recovered estimate of S in X 

= S + N

Of course, dwt and idwt correspond to W(⋅ ) and W−1(⋅ ),
while estthrsh and thrshold correspond to d(⋅ ) and 
D(⋅, ⋅ ), respectively. Although the utilities setwb and getwb
are unique to the WavBox software library, the important prin-
ciples of wavelet shrinkage denoising demonstrated here with
both math and code can be implemented in any program-
ming language with calls to the corresponding functions in
the appropriate libraries available for that language.

References
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mality and generality pertain to a wide range of
local and global measures of error, not just the
one displayed in Figure 5, which is SNR mea-
sured in decibels. In fact, we can obtain varying

results with different experimental conditions
(signal classes, noise levels, sample sizes, or
wavelet transform parameters) and error measures
including the l1, l2, and l∞ norms as well as the

Figure 3. Noisy
test signals
with n = 1,024,
SNR = 10. 
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SNR (measured in standard deviations and in
decibels). Which measure of error is most rele-
vant? What about other figures of merit? For ex-
ample, what if the error is not measured numeri-

cally, but rather is judged visually by the human
eye and mind? In this case, Donoho and other re-
searchers2,6 have claimed that VIS performs best.
To test this claim in a directly relevant manner,

Figure 4.
Wavelet shrink-
age denoising
with ‘SUR,’
DROLA (10; 5),
n = 2,048, L = 5. 
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let’s corrupt a photographic image with noise, and
then denoise it with the VIS, RIS, and SUR pro-
cedures. Figure 6 displays the results obtained
with SUR, which performed the best as judged
solely by an aesthetic visual comparison with the
original. 

An old debate between statistical
theory and experiment

Ideally, the interplay between theory and exper-
iment should provide the most productive
progress in science and engineering. Too often,
however, a rift has developed between theoreti-

cians and experimentalists. Especially in statistics,
theoreticians prove theorems based on asymptotic
principles unrealistically requiring infinitely large
sample sizes, whereas experimentalists perform ex-
periments based on either real or synthesized data
requiring only finitely small sample sizes. When
do the large-sample theorems apply to small-sam-
ple experiments? Ultimately, the debate must be
resolved by a choice of philosophy of approach
and interpretation of common sense.

With regard to wavelet shrinkage denoising, the
theoretical justifications and arguments in its fa-
vor remain highly compelling. The procedure
does not require any assumptions about the na-
ture of the signal, permits discontinuities and spa-
tial variation in the signal, and exploits the spatially
adaptive multiresolution features essential to the
wavelet transform. Furthermore, the procedure
exploits the fact that the wavelet transform maps
white noise in the signal domain to white noise in
the transform domain. Thus, although signal en-
ergy becomes more concentrated into fewer coef-
ficients in the transform domain, noise energy
does not. It is this important principle that enables
the separation of signal from noise.

Wavelet shrinkage denoising has been theoret-
ically proven to be nearly optimal from the fol-
lowing perspectives: spatial adaptation, estimation
when local smoothness is unknown, and estima-
tion when global smoothness is unknown. In ef-
fect, no alternative procedure can perform better
without knowing a priori the signal’s smoothness
class. But is it really necessary or appropriate to
use a procedure that is in this sense theoretically
optimal and general under most measures of local
and global error for data about which there is no a
priori knowledge?

The answer is that it probably isn’t necessary
for most practitioners who know something about
their data and concern themselves often with only
one critical outcome measure rather than many.
For example, if we feed the denoised signal’s fea-
tures into a neural-network pattern recognizer,
then the rate of successful classification should de-
termine the ultimate measure by which to com-
pare various denoising procedures. 

If we adopt the commonsense approach to
practical problem solving, the practitioner should
exploit any and all a priori information available
for his or her particular problem, and use an ap-
propriate denoising procedure as determined by
the most relevant outcome measure. Determin-
ing the most appropriate procedure necessarily
involves experiments to compare the performance
of a wavelet shrinkage denoising method (com-
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prising the most effective combination of wavelet
transform parameters and denoising rules and
thresholds for the range of sample sizes and noise
levels expected) with any other methods under
consideration. In addition, we must consider is-
sues of computational complexity. Algorithm
complexity might be measured according to CPU
computing time and floating-point operations, or
the number and kind of algorithm steps and their
impact on firmware or hardware requirements.

It is unlikely that one particular wavelet
shrinkage denoising procedure will be suit-
able, no less optimal, for all practical prob-
lems. However, it is likely that there will be

many practical problems, for which after appro-
priate experimentation, wavelet-based denoising
with either hard or soft thresholding proves to
be the most effective procedure. Using wavelet-
based denoising of the log-periodogram to esti-
mate the power spectrum might prove to be one
such important application with great promise
for further development.10
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strong commitment to undergraduate
and graduate education in computa-
tional science. A strong background in
computational tools, scientific visual-
ization, computer science, and applied
mathematics is desired. Promise of
continued activity in computational
research and pursuit of external fund-
ing are required. Ability to interact
with local industries is also expected.
Review of applications will begin on
April 17, 2000. Applications will con-
tinue to be accepted until the position
is filled. Send letter of application, re-
sume, transcript of the highest degree
earned, and three letters of recom-
mendation to 

Mr. Richard D. Meade
Faculty/Staff Recruitment Office

State University of New York, College
at Brockport

350 New Campus Drive, 
Rm 409 Allen

Brockport, NY 14420-2929
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