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Abstract— Specifications for reproducibility standards are
developed for wavelet transform algorithms. Reproducibil-
ity of an algorithm is defined as the requirement that the
specified algorithm yield the same transform coefficients for
the same signal data regardless of implementation in any
programming language or on any computing machine.

The specification is built with three heirarchical stages
consisting of 1) filter bank coefficients, 2) single-level con-
volutions, and 3) multi-level transforms. Each stage is spec-
ified with all the necessary choices, parameters, and oper-
ators required to insure reproducibility. Each stage can be
further characterized by additional properties that provide
relevant information. The specification has been designed
to be a sufficiently general and flexible framework which en-
compasses many different convolution types addressing the
issues of both the phase shift and the boundary treatment.

New convolution phase shift variants are introduced. In
particular, a peak near-aligned phase variant is demon-
strated on test signals and applied to fast wavelet based
matrix multiplication. Finally, in the context of compu-
tational science and engineering, the concept of scientific
reproducibility of an algorithm is discussed and contrasted
with two other concepts introduced as repetitive executabil-
ity and input-output repeatability.

Keywords—Wavelet transforms, multirate filter banks, al-
gorithms, repetitive executability, input-output repeatabil-
ity, scientific reproducibility, standards.

I. Introduction

GROWTH in the number of variations and applications
of wavelet transforms has progressed rapidly over the

past decade [1]. Indeed, this growth has been so expansive
that there are now many different classes and subclasses
of wavelets and wavelet transforms. Certainly, opinions
and definitions of what constitutes a wavelet and wavelet
transform vary with different authors [2]. Nevertheless,
this report focuses on those wavelet transforms that are
currently the most prevalent and that can be implemented
as iterated filter banks. Although particular attention is
addressed to non-redundant transforms, the general prin-
ciples of the methods described here can also be applied to
redundant transforms.

Most of the literature on wavelet transforms has dis-
cussed the theory of analysis and methods rather than
the implementation of algorithms. There have been a few
important and notable exceptions such as the papers by
Shensa [3] and Rioul and Duhamel [4]. However, these
articles discussed algorithmic schemes at a more general
level in order to describe them and compare their rela-
tive efficiency, rather than algorithmic implementations at
a sufficiently detailed level to specify them and insure their
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reproducibility.
The use of the terms describe and description when asso-

ciated here with the discussion of an algorithm will refer to
a general scheme or diagram for the algorithm, whereas the
terms specify and specification will refer to a complete list-
ing of all implementation details for the algorithm. With
this usage then, a description of an algorithm is sufficient
for a discussion of its efficiency, but a specification is nec-
essary for a discussion of its reproducibility.

A complete specification of an algorithm may be pro-
vided with a detailed pseudo-code template as exemplified
in the wavelet transform algorithm published by Taswell
and McGill [5] or with a sufficiently detailed listing of all
mathematical equations and parameters as exemplified by
the work of Bradley and Brislawn [6] for the FBI finger-
print image compression standard. However, these pub-
lished examples remain more the exception than the rule.
Systematic development of a standard for the specification
and reproducibility of wavelet transform algorithms has not
yet been promoted in the wavelet community.

Thus, this report presents the first attempt in the field
of wavelets to develop a systematic methodology to specify
mathematically, and then to evaluate numerically wavelet
filter banks, convolutions, and transform algorithms in a
heirarchical framework with empirical testing and valida-
tion of each stage. Any such methodology fulfilling this ob-
jective will constitute an important and necessary aspect
of reporting computational experiments involving wavelet
transforms. These algorithm verification methodologies
can then be used to insure reproducibility of results, espe-
cially for those experimental studies purporting to compare
alternative algorithms.

The evaluation methodology presented here comprises
a systematic listing of the principal parameters, choices,
and tests that can be specified and performed for wavelet
filter coefficients, single-level convolutions, and multi-level
transforms when the investigator wishes to guarantee re-
producibility and verifiability regardless of computing plat-
form and programming language. The specification of the
filter convolutions, the phase delays and advances of the
filters in the filter bank, and the treatment of the ends of
the signal remains a central issue relevant to algorithms for
finite-length signals. In the introduction to his paper [7],
Brislawn provides a comprehensive historical review of the
various convolution types available. However, reporting of
such details is often neglected.

To emphasize the importance of specifying these convo-
lution details, this article presents a unifying framework
for reporting them and demonstrates the use of this frame-
work with a simple yet novel solution to the phase align-



2 TASWELL: REPRODUCIBILITY STANDARDS FOR WAVELET TRANSFORM ALGORITHMS

ment problem. As an example application, this solution
is then applied to fast wavelet based matrix multiplica-
tion. Beylkin et al [8] introduced fast algorithms for the
efficient multiplication of sparse wavelet based representa-
tions for integral and pseudodifferential matrix operators
of a certain class. Keinert [9] continued this work by imple-
menting the Beylkin algorithm for biorthogonal instead of
orthogonal wavelets, and observing the relative advantages
and disadvantages of the various wavelets investigated. In
the example application demonstrated in Section III-D,
their work is extended further by experimentally compar-
ing different convolution phase variants instead of differ-
ent wavelets. Finally, Section IV discusses how the spec-
ification and evaluation methodology reported here pro-
motes scientific reproducibility in contrast with repetitive
executability, which is a term coined here to refer to the
notions advocated by several other authors [10], [11], [12].
Earlier versions of material reported in this article have
appeared elsewhere [13], [14].

II. Methods

Algorithms are specified here by building heirarchical
systems with modular components consisting of structures
and functions for filter banks, single-level convolutions, and
multi-level transforms. Each component, whether a struc-
ture containing data or a function processing data, is repre-
sented as a data matrix or an operator matrix. Each stage
of the heirarchy is detailed with all necessary choices to
insure reproducibility and verifiability. The specification
outlined here assumes that the multi-level wavelet trans-
form can be implemented as an iteration of a multi-rate
single-level convolution of the filters in an M -band filter
bank. Complete algorithmic details for all of the meth-
ods presented here have been and/or will be available in
a sequence of papers including [15], [16], and a software
function library [17], [18].

A. Filter Banks

Consider an M -band analysis and synthesis filter bank
system with uniform downsampling and upsampling rate
R. This system has M analysis filters with impulse re-
sponses fm ≡ fm(n), M downsamplers and upsamplers op-
erating at rate R, and M synthesis filters gm ≡ gm(n)
where m = 0, 1, . . . , M − 1 is the band index and n =
0, 1, . . . , N − 1 is the time index. Here N = QR is an in-
teger multiple Q = d(maxm Nm)/Re of R determined with
the maximum of the minimum support lengths Nm of fm.1

The first nonzero coefficient of each fm is indexed at time
step n = 0 and any filter with length Nm < N is padded
with trailing zeros. The first nonzero coefficient of each gm

is indexed at a time step n ≥ 0 and padded with either
leading or trailing zeros or both as long as the total length
with padding is constrained to N .

The filter coefficients can then be structured as the ma-
trices F = [fnm] and G = [gnm] with time index n increas-
ing down the rows and band index m increasing across

1The minimum support length of a filter is its length without any
leading or trailing zeros.

the columns. This convention permits columnwise tabula-
tion of the coefficients and facilitates convenient column-
wise analysis for the band filters in each of the columns.
Thus, individual filters in the filter banks can be readily
characterized by computing various measures of each col-
umn of coefficients in the matrices.

A minimal specification of the filter bank coefficients re-
quires either a) actual tabulation of the coefficient matrices
F and G, or b) specific definition of the computational algo-
rithm that generates the coefficient matrices with sufficient
detail to clarify choices of signs, phases, and normalization
constants. Assuming that F and G have been unequiv-
ocally specified, additional informative characterization of
the filter banks may also include a) the accuracy and pre-
cision of the numerical coefficients relative to their theoret-
ical values, b) various norms and statistical moments, the
number v of vanishing moments, the Holder estimate h for
time-domain regularity, estimates of the frequency-domain
selectivity, and other measures of the individual filters in
the filter banks, c) the system delay ∆ and reconstruction
error ε for an impulse processed through the filter bank
system, and d) other properties of the filter bank system
rather than the individual filters.

The delay ∆ and error ε can be computed most readily
with a simple modification of the method devised by Nayebi
et al. [19]. The Holder regularity h can be estimated by the
method of Rioul [20] or Taswell [15]. The number v of van-
ishing moments can be numerically tested by straightfor-
ward calculations subject to a prescribed error tolerance.
Such a definition interprets “vanishing” to mean that the
required “zero” is any absolute numerical value less than
the prescribed error tolerance. Finally, the filters may also
be tested numerically for other properties such as orthogo-
nality and biorthogonality. All of these methods and tests
are detailed in [15], [16].

B. Single-Level Convolutions

Under the assumptions validating the noble identities,
the order of analysis filters and downsamplers can be ex-
changed, and similarly the order of upsamplers and syn-
thesis filters can be exchanged [21]. Moreover, for com-
putational efficiency, each pair of operations can be inte-
grated into a single convolution operation called downscal-
ing for the composition of analysis filtering and downsam-
pling, and upscaling for the composition of upsampling and
synthesis filtering [20]. Thus, for the purposes of this ex-
position, the operations will be denoted with the matrices
T(fm) for filtering with the mth analysis filter fm, D for
downsampling, Dm ≡ D · T(fm) for downscaling with fm,
U for upsampling, T(gm) for filtering with the mth syn-
thesis filter gm, and Um ≡ T(gm) · U for upscaling with
gm. Since the matrix operators T are assumed here to im-
plement standard linear or circular convolution (denoted
respectively Tlin or Tcir), they are banded Toeplitz matri-
ces and thus the matrices Dm and Um are block Toeplitz
matrices.

Using this matrix notation, the single-level convolu-
tions can be implemented and studied as multiplications
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of the finite-length signal data X with the finite-size down-
scaling matrices Dm to obtain the decomposition bands
Ym = DmX, and then with the upscaling matrices Um to
obtain the reconstruction bands X̂m = UmYm. Summing
these outputs yields the final reconstruction X̂ =

∑
m X̂m.

In this representation, the matrices X and Y could be re-
placed by the vectors x and y. These alternatives corre-
spond to single- and multi-channel signal data with single
and multiple columns for the vectors and matrices, respec-
tively. Common examples of multi-channel data are two-
channel (left and right stereo) audio recordings and twelve-
channel electrocardiograms.

Discussion of the matrix representation of the single-level
convolutions suffices to fix issues related to reproducibility
without concern for efficiency. Again, this objective is de-
fined here principally as the requirement that a given se-
quence of output coefficients be computed reproducibly for
a given sequence of input coefficients. Thus, issues related
to efficiency (such as matrix-filter versus vector-filter im-
plementations [5], standard filter versus lattice filter imple-
mentations [21], and time-domain versus frequency-domain
implementations [4]) are not considered here other than as
already mentioned at the beginning of this section.

It is, however, the finite size of the downscaling, up-
scaling, and data matrices that does directly impact re-
producibility of the single-level convolutions, and conse-
quently, the multi-level transforms. This finiteness imposes
the necessity to consider the treatment of the ends of the
signal, not only with regard to the choice of the type of con-
volution such as zero-extended [5], circularly-periodized [5],
linearly-extended [22], [23], symmetrically-reflected [7], or
boundary-adjusted [24], but also with regard to the choice
of phase shifts for the convolutions. To specify the single-
level convolutions reproducibly, it is thus necessary to clar-
ify unambiguously the convolution types and phase delays
and advances imposed on the filter bands in the filter banks.
Clarifying in terms of the heirarchy of filter banks, single-
level convolutions, and multi-level transforms, the matrices
F and G determine a standardized M -band filter bank sys-
tem with all filters in the causal time-aligned zero-indexed
format as explained in Section II-A, while the matrices
{Dm,Um|m = 0, . . . , M − 1} determine an unrestricted,
possibly anti-causal, M -band single-level convolution sys-
tem for a decomposition and reconstruction allowing for
many possible variations of signal-end treatment.

All of the different types of convolutions can be incor-
porated in the following general framework described here
with analysis phase delays αim, synthesis phase delays βim,
and several additional matrix operators: the pre-processing
or extension matrix E, the shift matrix S, and the post-
processing or restriction matrix R. Then the mth analysis
downscaling and synthesis upscaling matrices can be rede-
fined as

Dm ≡ R · D · T(fm, α2m) · E(α1m)
Um ≡ R · S(β3m) · T(gm, β2m) · U · E(β1m)

for a scheme intended to impose a perfect reconstruction
result I =

∑
m Um · Dm on a single-level decomposition

and reconstruction whenever possible. Note that S(β3m) is
a final shift necessary to account for the combined delays
resulting from the operators E and T as well as from the
delay ∆ for the filter banks F and G in their standardized
format. This scheme assumes zero delays on the D, U, and
R operators but still allows for as many as 5M different
delay parameters for the E, T, and S operators used here
in the M -band single-level convolution system.

Phase alignment of peaks of polyphase components of
bands in the transform domain relative to the signal do-
main can be accomplished by the simple introduction of
two more circular shift operators and delay parameters in
the scheme

Dm ≡ S(α3m)RDT(fm, α2m)E(α1m)
Um ≡ RS(β4m)T(gm, β3m)UE(β2m)S(β1m)

which ideally should require that the final downscaling ro-
tation S(α3m) and the initial upscaling inverse rotation
S(β1m) yield the identity

I = S(β1m) · S(α3m).

Thus, imposing β1m = −α3m eliminates M of the addi-
tional parameters, and absorbing S(β1m) into E(β2m) elim-
inates another M of the additional operators. Relabeling
indices such that the main Toeplitz operators T(f) and
T(g) are assigned delay index i = 1, the inner operators S
and E are assigned i = 2, and the outer operators E and
S are assigned i = 3 yields the scheme

Dm ≡ S(α2m)RDT(hm, α1m)E(α3m)
Um ≡ RS(β3m)T(gm, β1m)UE(β2m)

as a general framework sufficient to account for the vari-
ous convolution types. This particular indexing convention
was adopted for WAVB3X 4.4 Software [17] used to produce
the results reported in Section III. Detailed algorithms
including pseudo-code templates for these phase aligned
convolution types will be available elsewhere.

A brief explanation, however, is provided here. Let µrm

(for r = 0, . . . , R − 1 and m = 0, . . . , M − 1) be the in-
dices of the center peaks of the rth polyphase components
of the mth band filters of the analysis filter bank F. Let
µRm be the indices of the center peaks of the entire mth

band filters of the analysis filter bank F. Then one possible
phase near-aligned solution involves: 1) choosing µ? = µrm

for a particular r and m, 2) setting all α1m to the delay ζ
computed as a function of R and µ?, 3) setting all α3m to
the delay η computed as a function of R and N , 4) setting
each α2m to a delay computed as a function of R and the
sum µrm + ζ + η, 5) setting β2m = −α2m, and 6) setting
β3m = −∆ − ζ − η. Numerous other solutions are possi-
ble depending on a) the definitions assumed for the center
peaks of polyphase components or entire filters, b) the def-
initions assumed for phase alignment or near-alignment,
and c) any other constraints imposed on the problem.

Thus, a minimal specification for reproducibility of the
single-level convolutions requires a) the convolution type
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including the composition sequence of the various opera-
tors as in the general framework above, b) the algorithms
for generating the operators with particular attention to
the extension operator E for a given extension or boundary
treatment type, c) any auxiliary parameters or boundary
filters necessary for E, d) restriction length parameters nec-
essary for the restriction operator R, and e) the phase shifts
necessary for any of the E, T, and S operators used by the
convolution type (or the algorithms for setting the phase
shifts). Additional characterization for verifiability of the
single-level convolutions may also include: a) comparison of
results with known sequences of transform-domain decom-
position coefficients for given sequences of signal-domain
test data, b) the reconstruction error ε for the test signals
resulting from use of the convolutions as a single-level de-
composition and reconstruction, and c) various other mea-
sures designed to reveal properties of the convolution type
such as energy conservation, distribution, and shift.

Simple definitions are possible for the latter measures as
ratios. Let the energy conservation ratio ρc be the ratio
of the energy of {Ym|m = 0, . . . , M − 1} to the energy of
X. Let the energy distribution ratio ρd be the ratio of the
energy of {Ym|m = 1, . . . , M − 1} to the energy of Y0. In
order to define the energy shift ratio ρs and also enable vi-
sualization of various aspects of the convolution including
the behavior of the polyphase components in response to
the M -band filters and the boundary treatment, a simple
test signal called a “multiple M -spike” has been designed.
This test signal has M -channels in which each channel has
impulses near the beginning, distributed through the mid-
dle, and at the end of the signal, but the impulses for each
channel are shifted relative to each other by one time index.
Thus, each channel is intended to test a different polyphase
component. In conjunction with this test signal, the energy
shift ratio ρs has been defined to track the energy displaced
by the phase shifts of the convolution. This measure, com-
puted by tracking energy in blocks of length R for all M
channels of the M -spike test signal, has values in the range
0 ≤ ρs ≤ 1 with a value of ρs = 0 indicating that no en-
ergy has been displaced by more than R time units. Note
however that the impulses in each channel of the M -spike
test signal must be spaced more than R time units apart
in order for this measure to be meaningful.

C. Multi-Level Transforms

Given analysis and synthesis filter bank coefficients spec-
ified by F and G (Section II-A) used to construct downscal-
ing and upscaling single-level convolution operators speci-
fied by Dm and Um (Section II-B), then a multi-level trans-
form algorithm can be specified as the procedure by which
Dm and Um (sized appropriately for each level l) are used
iteratively to process the input signal and compute the out-
put transform. For an L-level M -band wavelet transform
which iterates on the lowpass filter band indexed m = 0, a
pseudo-code template for the forward transform algorithm
can be written as

Y0
0 = X

for l = 0 : L − 1

for m = 0 : M − 1
Yl+1

m = Dl
mYl

0
end

end

and for the inverse wavelet transform algorithm as

X̂L
0 = YL

0
for l = L : −1 : 1

X̂l−1
0 = Ul

0X̂
l
0 +

∑M−1
1 Ul

mYl
m

end
X̂ = X̂0

0

with specific algorithms requiring definition of the object
structures used for storage of the coefficients (or alterna-
tively, the sequence of coefficients in an output file) in
a manner analogous to the example published in ACM
TOMS Algorithm 735 [5].

Thus, a minimal specification for reproducibility of a
multi-level transform algorithm requires a) the filter bank
coefficients F and G, b) the single-level convolution opera-
tors Dl

m and Ul
m, c) the algorithmic scheme by which the

convolution operators are iterated, d) the parameter L for
the number of levels of iteration, and e) the transform co-
efficient object structures with locations of coefficients in
the object structures or file output sequences. Additional
characterization for verifiability of the multi-level trans-
form algorithm may also include: a) known sequences of
transform coefficients for given sequences of test signal co-
efficients, and b) the reconstruction error E for the test
signals under various norms and conditions. For example,
degradation of the signal can be tracked through multiple
cycles of decomposition and reconstruction:

X̂ = X
for k = 1 : K

Y = fwt(X̂)
X̂ = iwt(Y)
E(k) = wtre(X, X̂)

end

where the function fwt is the forward wavelet transform,
iwt the inverse wavelet transform, and wtre the wavelet
transform reconstruction error. Plots of E(k) versus k can
be used to obtain empirical estimates of the error growth
rates as a function of the cycle k.

D. Error Types

Reporting any error value also requires that the type of
error be specified. Common error types include those de-
fined by the `p vector norms. In addition, let the following
elementwise error types be defined for an arbitrary matrix
X and its estimate X̂ with respect to the matrix elements
xij and x̂ij : the maximum absolute value error

mav(X, X̂) = max
i,j

|xij − x̂ij |,

the maximum relative value error

mrv(X, X̂) = max
i,j

|(xij − x̂ij)/xij |,
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and the maximum mixed value error

mmv(X, X̂) = max
i,j

|xij − x̂ij |/(1 + |xij |).

All errors reported in Section III-A are maximum abso-
lute value errors. Errors reported in Sections III-B, III-C,
and III-D are maximum mixed value errors unless noted
otherwise.

E. Software and Hardware

Numerical and graphical results reported here were com-
puted with Version 4.4a3 (29-Dec-96) of WAVB3X Soft-
ware [17], [18] running under Version 4.2c.1 (3-Oct-94) of
the MATLAB technical computing environment [25] on a
Toshiba Tecra 720CDT with a 133 MHz Pentium and the
Windows 95 operating system.

III. Results

All computations were performed for a critically sampled
wavelet transform multirate filter bank system with R =
M = 2. In analogy with the use of the term wavelet to
refer to filters and functions corresponding to the highpass
band, the term scalet will be used to refer to filters and
functions corresponding to the lowpass band.

A. Filter Banks

The Daubechies’ compact orthogonal least-asymmetric
filters [26] of length N = 8 were generated with the algo-
rithm described by Taswell [27], [28], [15]. Sign, phase,
and norm were chosen such that the coefficient f00 =
−7.577 × 10−2. Coefficients of all filters in the filter bank
were normalized in the `2-norm to one. Tests of the scalets
(lowpass filters f0 and g0) yielded results of v = 0 vanish-
ing moments and h = 1.403 Holder regularity estimates.
The wavelets (highpass filters f1 and g1 ) were also tested
and confirmed to have v = 4 vanishing moments with an
error of 8.49×10−12. All of the filters were confirmed to be
orthogonal with an error of 4.22 × 10−13. Values of ∆ = 7
and ε = 4.22 × 10−13 for the filter banks F and G were
obtained with the modified Nayebi-Barnwell-Smith perfect
reconstruction test [19], [16].

B. Single-Level Convolutions

A circularly-periodized convolution type was chosen for
the single-level decomposition and reconstruction steps and
was tested with a quadruple M -spike M -channel test signal
with M = 2. Figure 1 displays two different phase variants
of this convolution type: a causal analysis variant called
peak non-aligned with phase delays α = [0, 0; 0, 0; 0, 0]
and β = [0, 0; 0, 0;−7,−7], and an anti-causal analysis
variant called peak near-aligned with phase delays α =
[1, 1;−2,−3; 0, 0] and β = [0, 0; 2, 3;−8,−8]. The recon-
struction error was ε = 2.96 × 10−13 for both phase vari-
ants. The energy conservation and distribution ratios were
ρc = 1.000 and ρd = 1.000 for both phase variants. The
energy shift ratio was ρs = 0.954 and ρs = 0.084 for the
peak non-aligned and near-aligned variants, respectively.

C. Multi-Level Transforms

Using the configurations as described in Sections III-A
and III-B, the single-level steps were iterated to L = 5 lev-
els on a single-channel test signal called “peaks & chasms”
with length 512 samples. Figure 2 displays the approxi-
mations output by the scalets and details output by the
wavelets for each of the levels and each of the phase vari-
ants. In the usual “discrete wavelet transform” or “fast
wavelet transform”, only the wavelet details from levels
l = 1, . . . , 5 and the scalet approximation from level l = 5
would be retained for storage or further processing as the
non-redundant transform.

The single-level steps were also iterated to L = 5 lev-
els, and tested for K = 100 cycles of forward and inverse
transforms on a single-channel test signal called “random
normal” with length 512 samples. Figure 3 displays log-
log plots of the reconstruction error E(k) as a function of
k. Linear regression estimates of the slopes of the error
curves for each of the `1, `2, and `∞ error norms resulted
in values of 1.00 yielding the empirical observation

log10 E(k) = E(1) + log10 k.

Values of E1(1) = 1.34 × 10−10, E2(1) = 7.36 × 10−12, and
E∞(1) = 9.56 × 10−13 were obtained for the `1, `2, and `∞

error norms, respectively.

D. Application to Fast Matrix Multiplication

Again using the configurations as described in Sec-
tions III-A and III-B, the single-level steps were iterated
to L = 4 levels in a separable 2-D wavelet transform for
an application to fast-wavelet-based matrix multiplication
as described by Beylkin et al. [8]. Using their examples
#1 and #2 called here “BCR1” and “BCR2”, test matri-
ces of size 128 × 128 were multiplied in their natural do-
main, the wavelet domain using the standard forms of the
matrices (SFM), and the wavelet domain using the non-
standard forms of the matrices (NFM), both with thresh-
olding (t = 1 × 10−4) and without thresholding (t = 0).
Table I summarizes the errors computed relative to multi-
plication in the natural domain assumed to be the correct
product. Causal peak non-aligned and anti-causal peak
near-aligned phase variants are abbreviated with the labels
“Null” and “Peak” respectively. Tables II and III list the
data compression numbers N 2

f for a range of values of the
fraction f (see [29] for the definition of N 2

f ) as well as the
relative fractional change (RFC) in N 2

f for the Peak vari-
ant in comparison with the Null variant. The test matrix
BCR1 in both standard and non-standard forms provides
an example for which the Null and Peak convolution phase
variants do not impact the compression of the matrix op-
erator. However, the test matrix BCR2 in both standard
and non-standard forms provides an example for which the
different phase variants do affect the compression of the
matrix operator with the Peak variant improving the com-
pression relative to the Null variant.



6 TASWELL: REPRODUCIBILITY STANDARDS FOR WAVELET TRANSFORM ALGORITHMS

IV. Discussion

A. Wavelet Transform Algorithms

As the number of applications and use of wavelet trans-
forms continue to grow, so does the number of classes
and variations of wavelet transform algorithms. All of
these algorithms incorporate a convolution with a kernel
in some implementation, typically, as part of an iterated
filter bank. In contrast to implementations of the classical
Fourier transform where mathematically there is at most a
choice of sign and normalization constant in the complex
exponential kernel, for wavelet transform algorithms there
are multiple choices including the signs, phases, normaliza-
tion constants of the wavelet kernels as well as the phase
shifts of each of the filters in the wavelet filter bank. These
algorithmic details, however, are usually not reported in
the literature albeit with certain exceptions such as the
FBI fingerprint image compression standard [6].

Nevertheless, it is necessary to specify such details in or-
der to insure the reproducibility of results output by each
algorithm regardless of its implementation by any program-
mer working in any language or any engineer designing any
DSP chip. This report has developed a specification and
evaluation methodology which includes an itemized list of
choices that must be stated clearly in order to insure the
reproducibility of a sequence of transform coefficients gen-
erated by a specific wavelet transform algorithm. More-
over, this report has presented a simple yet novel solution
to the phase peak alignment problem for wavelet trans-
forms (see Section II-B and Figures 1 and 2). The general
principles of this solution can be applied in various specific
forms to both non-subsampled and critically subsampled
wavelet transforms and to both symmetric and asymmet-
ric wavelet filters. In particular, it has been applied to the
methods of Beylkin et al. [8] for fast-wavelet-based matrix
multiplication (see Section III-D).

The latter application demonstrated at least one test
matrix example for which compression was improved by
the choice of a particular convolution phase variant. How-
ever, as discussed throughout the text, unambigous spec-
ifications and standards for reporting wavelet transform
algorithms have been discussed here in an effort to address
reproducibility rather than efficiency. In fact, developing
standards for the reproducible use of computational meth-
ods in experimental science has received attention in an
editorial [30] published in 1996. The author’s original per-
spectives on reproducibility in computational science were
published [31] several years earlier in 1992.

These concerns acquire growing importance for wavelet
transform algorithms as their application moves into fields
where data analysis rather than data compression becomes
the primary task. Nowhere is this importance more dra-
matic than for the analysis of biomedical signals and im-
ages with results intended ultimately for clinical diagnosis
and treatment. Algorithms specified to a given standard
should reproducibly yield the same analytic result for the
same data regardless of programming language and com-
puting machine. If not, then different implementations in

different laboratories could yield different results leading
to different diagnoses and treatments for the same patient
with the same clinical test data.

B. Reproducibility Standards

The scheme outlined here has been developed as a frame-
work for specifying and evaluating wavelet transform algo-
rithms using three heirarchical stages. For its full elabora-
tion, it will be necessary to complete more detailed work on
the methodology for each stage. Such an elaboration has
already been developed further for the first stage involving
the filter bank coefficients [16]. Additional work will also
be pursued for the second stage and third stage involving
single-level convolutions and multi-level transforms, respec-
tively.

This methodological framework, with its heirarchical and
polymorphic structures and operators, and with its empir-
ical tests of parameters, has been designed to be compre-
hensive and flexible allowing for many different variations
yet sufficiently complete to insure reproducibility. Note
that simpler schemes do not suffice. For example, an eval-
uation standard cannot be limited to reporting merely the
error from tests of perfect reconstruction after transforming
and inverse transforming. While these tests are necessary,
they are not sufficient and do not verify that the correct
sequence of transform coefficients has been generated. A
similar argument applies to tests of energy conservation
for energy conserving transforms because transform coeffi-
cient sequences with different signs and phases may have
the same energy. Thus, there is only one way to insure
reproducibility of a wavelet transform algorithm and verify
its correct implementation: 1) specify it completely with
a sufficiently detailed combination of mathematical equa-
tions, choices of parameters, and pseudo-code templates
for the algorithm, 2) verify it by comparing results with
known sequences of output transform coefficients for given
input signal data, and then 3) verify the inverse transform
algorithm with tests for perfect reconstruction.

The elements of any such standard should specify enough
information to enable the algorithm to be implemented and
to yield results reproducibly in a consistent manner inde-
pendently of computing platform and programming lan-
guage. In this report, elements of both minimal specifica-
tions and additional characterizations were listed for three
heirarchical stages of the algorithms: 1) filter bank coef-
ficients, 2) single-level convolutions, and 3) and iterated
multi-level transforms. The minimal specifications are re-
quired for reproducibility of results whereas the additional
characterizations, although informative and useful, are not.
Whether an element of a reproducibility standard is de-
clared to be in the former or the latter category can be de-
bated. It will depend on whether the element is considered
to be a constituent of the specification or the verification.
For example, error tolerance limits could be established as
a requirement of the specification, or errors could be re-
ported as a characterization of the verification.

A reproducibility standard should also provide a general
framework for specifying the many different types of con-
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volutions and their phase shift variants. Different phase
shift variants, such as the near-aligned solution introduced
here, could affect the results of methods based on wavelet
transforms, and thus should be reported. Not every con-
volution type requires all of the operators and parameters
of the scheme reported here. If the general framework is
nevertheless retained for the specification of all cases, those
operators not needed for a particular convolution type can
simply be set to identity matrices I with zero delays. Of
course, a computationally efficient implementation would
eliminate this redundancy. However, the general frame-
work developed here is designed to specify and test repro-
ducibility rather than efficiency.

C. Scientific Reproducibility versus Repetitive Executabil-
ity and Input-Output Repeatability

Digital signal processing with wavelet transform algo-
rithms can be considered a field within computational sci-
ence and engineering. Algorithm specification and eval-
uation methodology must be developed for this field just
as analysis and reporting methodologies must be improved
for experimental computational science in general. This
methodological work and its publication and dissemina-
tion should be pursued in a manner entirely analogous
to the promotion of statistical data analysis and report-
ing methodology necessary for any experimental science.
This position was articulated by the author in an editorial
[31] published in 1992 from which the following paragraphs
are quoted.

“Publishing ambiguous algorithms permits different in-
terpretations of what is presumed mistakenly to be the
same algorithm. Not publishing clear expositions of the
implementations of algorithms permits alternative imple-
mentations that may be mathematically equivalent in the-
ory on paper but numerically different in practice on the
computer.”

“Failure to establish clear standard definitions and
names for algorithms prevents investigators from making
scientifically valid comparisons of experimental results ob-
tained from the different implementations of the differ-
ent algorithms. Algorithms should be published consistent
with the standards of exposition and detail as established,
for example, in numerical methods and analysis.”

“Methods intended for practical computation should be
published consistent with the standards of any experimen-
tal science as established, for example, in physics, chem-
istry, biology, and medicine: that is, sufficient information
should be provided so that the experiment can be easily
reproduced by another independent investigator.”

Some of these points deserve amplification. Proper sci-
entific reporting for any science requires that all materi-
als and methods including equipment, supplies, reagents,
subjects, processes, procedures, et c. be sufficiently well
detailed that another investigator in an independent labo-
ratory could reproduce the experiment and obtain the same
results. According to this scientific standard as applied to
computational science, it is therefore mandatory not only
to specify algorithms in sufficient detail but also to report

the version of the software implementation and hardware
platform used to perform experiments. Such mandatory
reporting should apply to all software whether commercial
or not, just as it does in other sciences for all reagents and
equipment whether commercial or not. Only by explicit re-
porting of hardware and software can conflicts be resolved,
bugs traced, and irreproducibility stopped.

Note that this report does not present any statement that
in any way implies requisite use of the WAVB3X Software
Library nor any other particular software package. Thus,
the specification and evaluation methodology has only been
implemented and demonstrated here with WAVB3X Soft-
ware but does not require it in any way. On the contrary,
the methodology can be implemented in any newly writ-
ten function library in any programming language on any
computing platform of which the latter phrase is one of the
requirements for reproducibility defined here. In fact, this
report does not call for any required algorithm that inves-
tigators must use. Instead, this report provides a method-
ology for evaluating and reporting whichever wavelet trans-
form algorithm an investigator freely chooses to use.

Careful specification and evaluation of algorithms pro-
motes independent verification of hypotheses, results, and
proposed conclusions. Skepticism, as distinct from both
cynicism and unquestioning acceptance, remains one of
the hallmarks of scientific investigation. Thus, scientific
hypotheses remain hypotheses until they become scientific
principles accepted as a consequence of independently re-
producible and verifiable experimental results. Proposed
engineering methods remain only proposals until the op-
erating characteristics of their practical use are proven
through independently reproducible and verifiable imple-
mentations and applications. Even proposed mathemat-
ical theorems remain only proposals until independently
and rigorously verified by other means preferably based on
alternate methods of proof.

In contrast to the position advocated in this report and
elsewhere by the author [31], [14], Claerbout and colleagues
have promoted a different meaning for “reproducible re-
search” and “making scientific computations reproducible”
with “reproducible electronic documents” [10], [32]. They
describe methods to re-execute scripts and codes that re-
generate electronic documents with figures. They do not
describe any means by which to verify repeatability of out-
put results for given input data other than visual inspection
of figures.

Even if their methodology provided for numerical verifi-
cation of the repeatability of results, any such verification
would only imply the the absence of compilation and execu-
tion or runtime errors as well as the absence of randomness
in the execution of the code. Thus, if the code generates
an erroneous result, this error will be repeated every time
the code is run. If the code is redistributed to and reexe-
cuted by other investigators, the same error will continue
to be propagated. Merely rerunning the same code does
not provide the independent verification required for re-
producibility of a result in experimental science. Thus, the
methodology described by Claerbout et al. could be more
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correctly termed methods to insure repetitive executabil-
ity of code that generates electronic documents, but not
methods to insure scientific reproducibility of algorithms
and experiments in computational science.

As demonstrated by the computational experiments of
Hatton, errors in scientific software remain “rather worse
than we would ever dare to fear” [33, pg:38]. In fact, pro-
viding experimental confirmation justifying the concerns
expressed by Taswell [31], Hatton found that “the disagree-
ment between nine different implementations of the same
published mathematical algorithms written in the same
language using the same input data and same disposable
parameters is much worse than anticipated” and that “the
disagreement among algorithms that are not as well speci-
fied is several times worse than disagreement among those
that are defined formally using mathematics” [33, pg:37].
Hatton recommends that the investigator “attempt to ver-
ify [a computational result] by at least one independent
software implementation.” He cautions that “simply swap-
ping software on whose calculations you depend is inher-
ently high-risk” and that “even when independent imple-
mentations agree, there may still be problems”.

Despite the significant problems with software errors in
computational science and the major flaws in the meaning
of “reproducibility” advocated by Claerbout et al. other au-
thors have promoted his notion of “reproducibility” with-
out questioning it, even going so far as to equate it with
“scholarship”. In summarizing the Claerbout notion of “re-
producibility”, Buckheit and Donoho make the following
claim [11, pg:59]. “An article about computational science
in a scientific publication is not the scholarship itself, it
is merely advertising of the scholarship. The actual schol-
arship is the complete software development environment
and the complete set of instructions which generated the
figures.” (Words emphasized in quote as per [11].) This
claim has since been endorsed and republished by Mallat
[12, pg:17].

However, their statements must be refuted. A scientific
publication should never be advertising without the sub-
stance and content necessary for an independent investiga-
tor to scientifically reproduce the work. Scientific publica-
tion should carefully document scientific scholarship which
must include a complete description and discussion of lit-
erature review, motivation, hypothesis, experimental ma-
terials methods and results, and finally conclusions based
on objective arguments debating the pros and cons of ei-
ther various competing hypotheses, proposed algorithms,
or alternative computational methods. It should not be
argued that because of lack of space in journals, the in-
vestigator cannot detail methods and must relegate them
to code available separately. In fact, in most experimental
sciences, it is standard practice to require appropriate cita-
tion of the prior publications that provide the specifications
and verifications for methods used but not detailed within
the materials and methods sections of any new publication
that reports experiments using the cited methods.

Nor can scholarship be equated with simply providing
code or a software environment. Nevertheless, Buckheit

and Donoho further imply that if an investigator does not
provide freely redistributable code, he is not doing good
science [11, pg:60]. “ . . . one can never require researchers
to publish their code. But examples like the GNU project
show that very bright and able people are naturally drawn
to share their intellectual works with others, and so some
researchers will do it. We believe that those who do will
do better science than those who don’t.” On the contrary,
requiring complete mathematical and algorithmic specifica-
tion along with numerical evaluation and verification will
lead to better science rather than merely redistributing
code for all the reasons already elaborated in this report.
Furthermore, several simple questions refute the position of
Buckheit and Donoho. Does a book or journal have worse
scholarship because books are not freely redistributable? Is
a chemist, biologist, or physicist a worse scientist because
he does not freely redistribute his equipment, supplies, and
reagents?

It has not been the intent of this report to debate the
meaning of science nor how to judge its quality. However,
it has been the purpose of this report to clarify notions
of reproducibility in computational science using wavelet
transform algorithms as an example context within which
to elaborate concepts. This report concludes by summa-
rizing several of the key concepts introduced and discussed
throughout the text with the following definitions.
Repetitive executability: For a particular implementation
of a particular algorithm or electronic document, verifica-
tion that repeated recompilation and reexecution of the
code with regeneration of the output can be performed
without any compiler or runtime errors.
Input-output repeatability: For a particular implementa-
tion of a particular algorithm, verification of both repet-
itive executability and numerically identical repeated out-
puts for repeated inputs.
Scientific reproducibility: For alternative implementations
in any programming language on any computing machine of
a particular algorithm specified unambiguously with math-
ematical equations and pseudo-code templates, verification
of numerically equivalent repeated outputs for repeated in-
puts within a given numerical tolerance according to the
accuracy and stability of the algorithm and the precision of
the machine arithmetic. For each of the alternative imple-
mentations, both repetitive executability and input-output
repeatability must hold true.

A more complete heirarchy of reproducibility in com-
putational science and engineering must incorporate con-
sideration of other important issues beyond specification
and verification of a particular algorithm. For example,
related to that algorithm, there could be analytic equiva-
lences for mathematical identities with alternate right hand
sides for the same left hand side, as well as alternate nu-
merical discretizations for the same analytic identity if con-
tinous. These concepts will be elaborated further in future
work.

References
[1] Jelena Kovacevic and Ingrid Daubechies, “Scanning the special

issue on wavelets,” Proceedings of the IEEE, vol. 84, no. 4, pp.



TECHNICAL REPORT CT-1998-01. 9

507–509, Apr. 1996.
[2] Wim Sweldens, “Wavelets: What next?,” Proceedings of the

IEEE, vol. 84, no. 4, pp. 680–685, Apr. 1996.
[3] Mark J. Shensa, “The discrete wavelet transform: Wedding the
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TABLE I
Errors for Fast-Wavelet-Based Matrix Multiplication

Threshold t = 0 t = 1 × 10−4

Phase Null Peak Null Peak
SFM 1.76e-12 1.85e-12 1.73e-4 1.95e-4
NFM 2.29e-12 2.69e-12 2.07e-4 1.90e-4

TABLE II
Data Compression Numbers N 2

f for Standard Forms

Matrix BCR1 BCR2
Phase Null Peak RFC Null Peak RFC

f = 0.500 169 169 0.000 12 11 0.083
f = 0.900 591 584 0.012 85 66 0.224
f = 0.950 734 725 0.012 138 103 0.254
f = 0.990 1246 1239 0.006 300 263 0.123
f = 0.999 1975 1952 0.012 652 588 0.098

TABLE III
Data Compression Numbers N 2

f for Non-Standard Forms

Matrix BCR1 BCR2
Phase Null Peak RFC Null Peak RFC

f = 0.500 229 230 -.004 12 11 0.083
f = 0.900 811 808 0.004 118 87 0.263
f = 0.950 979 975 0.004 233 158 0.322
f = 0.990 1320 1316 0.003 595 386 0.351
f = 0.999 1916 1898 0.009 1179 931 0.210
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Fig. 1. Single-level decomposition and reconstruction with circularly-periodized convolution for quadruple M -spike test signal. Channel 0:
“∗”; Channel 1: “o”. Top: peak non-aligned phase; Bottom: peak near-aligned phase.
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Fig. 2. Multi-level transform with circularly-periodized convolution for “peaks & chasms” test signal. Top: peak non-aligned phase; Bottom:
peak near-aligned phase.
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Fig. 3. Plots of log10 E(k) versus log10 k for `1, `2, and `∞ error norms for a wavelet transform with L = 5.


