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Abstract

Empirical tests have been developed for evaluating the numerical properties of multirate M -band filter
banks represented as N×M matrices of filter coefficients. Each test returns a numerically observed estimate
of a 1×M vector parameter in which the mth element corresponds to the mth filter band. These vector valued
parameters can be readily converted to scalar valued parameters for comparison of filter bank performance
or optimization of filter bank design. However, they are intended primarily for the characterization and
verification of filter banks. By characterizing the numerical performance of analytic or algorithmic designs,
these tests facilitate the experimental verification of theoretical specifications.

Tests are introduced, defined, and demonstrated forM -shift biorthogonality and orthogonality errors, M -
band reconstruction error and delay, frequency domain selectivity, time frequency uncertainty, time domain
regularity and moments, and vanishing moment numbers. These tests constitute the verification compo-
nent of the first stage of the hierarchical three stage framework (with filter bank coefficients, single-level
convolutions, and multi-level transforms) for specification and verification of the reproducibility of wavelet
transform algorithms.

Filter banks tested as examples included a variety of real and complex orthogonal, biorthogonal, and
nonorthogonal M -band systems with M ≥ 2. Coefficients for these filter banks were either generated by
computational algorithms or obtained from published tables. Analysis of these examples from the published
literature revealed previously undetected errors of three different kinds which have been called transmission,
implementation, and interpretation errors. The detection of these mistakes demonstrates the importance
of the evaluation methodology in revealing past and preventing future discrepancies between observed and
expected results, and thus, in insuring the validity and reproducibility of results and conclusions based on
those results.

I. Introduction

Multirate M -band filter banks play many important roles in diverse engineering systems, not
least of which is their use as the key engine of iteration in wavelet transform algorithms. Their
critical importance in these algorithms warrants unambiguous specification and verification in any
effort to insure the scientific and engineering reproducibility of results obtained with them. This
reproducibility has been defined [11], [14] as the requirement that the specified algorithm yield
the same results for the same data regardless of implementation in any programming language
on any computing machine. Moreover, a methodology to evaluate reproducibility in this context
has been designed [11], [14] as a three stage framework with hierarchical and polymorphic struc-
tures and operators. Filter bank coefficients, single-level convolutions, and multi-level transforms
constitute the three stages of this framework. Each stage requires both a specification and a veri-
fication component. Use of this evaluation methodology facilitates the detection of errors in filter
banks and transform algorithms as well as other discrepancies between theoretically expected and
experimentally observed results.

As described in [11], [14], specification of the filter bank coefficients necessitates either tabulation
of the coefficients or definition of the computational algorithm that generates the coefficients, while
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verification of the filter bank involves characterization of the filter bank’s properties with numerical
estimates of parameters such as the reconstruction error, frequency domain selectivity, time domain
regularity, et c. Most importantly, if a filter bank is designed to possess certain characteristics in
the specification, then experimentally observed results for those theoretically expected character-
istics must be evaluated independently in the verification. However, the details of this evaluation
methodology were not elaborated in [11], [14]. Therefore, in this report, detailed computational
algorithms are introduced in Section II for a comprehensive suite of novel tests for filter bank
evaluation including the M -shift biorthogonality and orthogonality errors, M -band reconstruction
error and delay, frequency domain selectivity, time frequency uncertainty, time domain regularity,
time domain centers and moments, and vanishing moment numbers, each of which is valid for all
M -bands of the M -band filter banks.

The evaluation tests are then demonstrated in Section III on a diverse variety of M -band
wavelet filter banks. Using the names and acronyms summarized here, these filters include the
Daubechies Real Biorthogonal Balanced Regular (DRBBR) and Complex Orthogonal Most Sym-
metric (DCOMS) [12], [15], Rioul Real Orthogonal Most Selective (RROMS) [8], Heller Real Or-
thogonal M -band K-regular (HROMK) [3], Sherlock Real Orthogonal 2-band 1-regular [9] pa-
rameterized with Random Angles (SRORA), Hermite Real Nonorthogonal Symmetric Binomial
(HRNSB) [2], and a wide assortment of filter banks available from Nayebi et al. [5]. The filter
banks chosen as test examples were selected to represent a variety of different classes with contrast-
ing features. In addition, representative examples were selected for both kinds of specification, i.e.,
filter coefficients generated by computational algorithms and filter coefficients listed in published
tables. Finally, the evaluation methodology and those test examples observed to incur errors are
discussed in Section IV with respect to the importance of using the methodology to 1) detect er-
rors in filter banks and their generating algorithms and 2) reveal significant discrepancies between
theoretically expected and experimentally observed results. Some of the methods presented here
have previously appeared in the conference paper [13].

II. Methods

A. Notation and Conventions for Filter Banks

Consider an arbitrary M -band analysis and synthesis system with uniform downsampling and
upsampling rate R. This system has M analysis filters am ≡ am[n], M downsamplers and up-
samplers operating at rate R, and M synthesis filters sm ≡ sm[n] where m = 0, 1, . . . ,M − 1 is
the band index and n = 0, 1, . . . , N − 1 is the time index. Here N = BR is an integer multiple
B = d(maxmNm)/Re of R determined with the maximum of the minimum support lengths Nm

of am. The first nonzero coefficient of each am is indexed at time step n = 0 and any filter with
length Nm < N is padded with trailing zeros. The first nonzero coefficient of each sm is indexed
at a time step n ≥ 0 and padded with either leading or trailing zeros or both as long as the total
length with padding is constrained to N .

All filters in the system can then be represented as the N×M matrices A ≡ [anm] and S ≡ [snm]
with time index n increasing down the rows and band index m increasing across the columns. This
convention permits columnwise tabulation and display of the coefficients and facilitates convenient
columnwise data analysis for the band filters in each of the columns. Individual filters in the filter
banks can be readily characterized by computing various measures, such as norms and statistical
moments, of each column of coefficients in the matrices. Thus, for each type of parameter charac-
terizing a given filter bank, there is a corresponding 1 ×M vector of parameter estimates for the
M columns of the filter bank.

To fix the normalization of a filter bank, assume that an N×M filter bank H has been given with
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a lowpass filter h0 that has a nonzero coefficient sum
∑

n h0[n] 6= 0. Then given a normalization
constant η for the desired F to be obtained from the given H, compute the η-normalized F with

fm =

(
η/

N−1∑
n=0

h0[n]

)
hm (1)

for m = 0, 1, . . . ,M − 1 which yields the desired constant η =
∑

n f0[n] as coefficient sum for the
lowpass filter f0. For an alternate type of normalization, consider the uniform unit band energy
normalization

fm =

(
N−1∑
n=0

|hm[n]|2
)−1/2

hm (2)

which is computed independently for each band m = 0, 1, . . . ,M − 1 and does not require a
normalization constant.

B. Iteration of Multirate Filter Banks

The filter coefficients themselves constitute the discrete impulse responses for the FIR filters of the
filter bank. Iterative interpolation with upscaling approximation yields estimates of the continuous
impulse responses for the functions corresponding to the filters. In the following development of
notation, the discussion begins with a 2-band wavelet system where f and g are used instead of f0
and f1 for the lowpass scalet and highpass wavelet filters, respectively. Then later for the M -band
case, the notation will return to the more general expressions with fm.

For the iterates {f (j)[n]|j = 0, 1, 2, . . . } of the lowpass scalet filter f [n] with length N and
normalization η = 2, let f (0)[n] = f [n] be the initial discrete impulse response and let the recursion

f (j+1)[n] =
N−1∑
k=0

f [k]f (j)[n− 2k] (3)

determine the sequential estimates f (j) of the continous impulse response approximating the corre-
sponding scalet function

φ(t) =
N−1∑
k=0

f [k]φ(2t− k) (4)

defined by an implicit two-scale equation relating φ to itself.
Analogously, for the iterates {g(j)[n]|j = 0, 1, 2, . . . } of the highpass wavelet filter g[n], let

g(0)[n] = g[n] be the initial discrete impulse response and let

g(j+1)[n] =
N−1∑
k=0

g[k]f (j)[n− 2k] (5)

determine the sequential estimates g(j) of the continous impulse response approximating the cor-
responding wavelet function

ψ(t) =
N−1∑
k=0

g[k]φ(2t− k) (6)
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defined by an explicit two-scale equation relating ψ to φ.
More generally, for an M -band filter bank F with normalization η = M and upsampling rate

R = M , let Y(0) = F be the set of initial discrete impulses with matrix Y ≡ [ynm] and column
vectors y(0)

m = fm for m = 0, 1, . . . ,M − 1. Then let

y(j+1)
m [n] =

N−1∑
k=0

f0[k]y(j)
m [n−Mk] (7)

be the estimates of the continous impulse responses approximating the corresponding scalet and
wavelet functions

φ(t)
ψm(t)

}
=

N−1∑
k=0

fm[k]φ(Mt− k) for
{
m = 0
m = 1, . . . ,M − 1

(8)

defined by the M -scale equations relating φ or ψm to φ. After J iterations, obtain the approxima-
tions

φ(tn)
ψm(tn)

}
≈ y(J)

m [n] for
{
m = 0
m = 1, . . . ,M − 1

(9)

with discrete samples indexed by n at continuous times tn = nM−J−1. For simplicity of notation
in the remainder of the text, let ψ0 denote φ.

C. Kronecker Delta Error kde(f)

In the following development of definitions and tests for various filter parameters, it will be
convenient to base some of them on an underlying test of an arbitrary vector f ≡ f [n] for its
approximation to a Kronecker delta vector. Let δk ≡ δk[n] denote the Kronecker delta vector with
a single nonzero element δk[n] = 1 at time index n = k. Then define the Kronecker delta delay d
and error e with

d = kdd(f) = argmax
n

|f [n]| (10)

e = kde(f) = error(f , δd)
= max

n
|f [n] − δd[n]| (11)

where error(·, ·) can be any appropriate error function such as an `p vector norm of the difference
of the arguments, for example as shown here, the maximum absolute value error with the `∞ norm.
Note that d indexes the time location expected for the Kronecker delta spike in f .

D. M -Shift Biorthogonality Error mbe(A,S)

Assume two filter vectors a and s of minimum support length Na and Ns, respectively, each with
first nonzero coefficient aligned to time index n = 0. Construct the K ×M matrix C ≡ [ckm] from
the M -shift m-delay convolutions (· ∗m ·) of the two filter vectors a and s with resulting column
vectors cm = a ∗m s defined by

cm[k] =
N−1∑
n=0

a[n]s[m+ kM +N − n] (12)
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for m = 0, . . . ,M − 1 and k = 0, . . . ,K − 1 where N = max(Na, Ns) and K = dN/Me. Compute
the Kronecker delta errors for the column vectors cm of the matrix C. Then

em = kde(cm) = kde(a ∗m s) (13)
d = mbd(a, s) = argmin

m
em (14)

e = mbe(a, s) = min
m

em (15)

determines M -shift m-delay biorthogonality for the two filter vectors a and s with observed delay
d and error e. Note that d represents the relative delay between the two vectors in the m-delay
convolution (· ∗m ·). This delay is distinct from the delay defined for the Kronecker delta spike in
Section II-C.

To determine the mutual biorthogonality of the filters in the N ×M filter bank matrices A and
S, define the M ×M matrix E ≡ [eij ] with

eij =
{

mbe(ai, sj) if i = j
minm error(ai ∗m sj,0) if i 6= j

(16)

where 0 is the zero vector. For consistency with the previous default type of error function used
for the mbe and kde functions, the error function here should be taken as the maximum absolute
value error. Then define the 1 ×M vector e ≡ [ej ] with

ej = max
i
eij (17)

as the error of biorthogonality for each band of the M -band filter banks. Summarizing for both a
pair of filters as well as a pair of filter banks, denote the M -shift biorthogonality errors with

e = mbe(a, s) (18)
e = mbe(A,S). (19)

The above definition of mutual M -shift biorthogonality for the band filter column vectors of the
filter bank matrices A and S does not necessarily imply the biorthogonality of A and S as linear
operator matrices.

E. M -Shift Orthogonality Error moe(F)

Given the above definitions for M -shift biorthogonality, then define M -shift orthogonality for a
filter vector f or filter bank matrix F as the M -shift biorthogonality of the vector f and its para-
conjugate fP or of the matrix F and its paraconjugate FP. Thus, define the M -shift orthogonality
errors for f and F with

e = moe(f) = mbe(f , fP) (20)
e = moe(F) = mbe(F,FP). (21)

Again, note that this definition of mutual M -shift orthogonality for the M column vectors of F as
a filter bank matrix does not necessarily imply the orthogonality of F as a linear operator matrix.

F. M -Band Reconstruction Error mre(A,S)

Two empirical tests for the M -band reconstruction error

e = mre(A,S) (22)
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for the analysis synthesis filter bank system {A,S} have been implemented as appropriate modifi-
cations of perfect reconstruction criteria published elsewhere. Both tests are based on time domain
conditions for exact reconstruction: the unique operator criterion of Rioul [7, pg.2595, eqn.21] for
the downscaling and upscaling operators associated with A and S, and the time delayed block
reconstruction criterion of Nayebi et al. [5, pg.1415, eqn.30] for the output blocks of size M ×M
when downsampling and upsampling rates R = M for both A and S. Since the latter test proves
to be more general as well as more convenient for the empirical determination of the M -band
reconstruction delay

d = mrd(A,S) (23)

it was used for the numerical computation of the values e and d reported here for M -band filter
banks. Note that max(d) ∈ N measures the delay in time samples for reconstruction of an impulse
processed through the filter bank system. For a correctly implemented system, all empirical esti-
mates {dm | m = 0, . . . ,M − 1} should equal the expected delay ∆ that has been designed for the
filter bank. Finally, note that the original criterion described by Nayebi et al. [5] was intended for
use in a design and optimization algorithm rather than for use in independent tests of reconstruc-
tion error and system delay. Thus, the essential extension implemented here is the modification of
the original criterion for use in evaluating the errors and delays of each of the bands in the M -band
filter bank.

G. Time Domain Moments tdm(F)

Given the N × M filter bank matrix F with band filters fm, generate the estimates of ψm(tn)
with y(J)

m [n] as explained in Section II-B leading to Equation 9. Then define the qth power weighted
discrete and continous time domain centers

cmq =

〈(
N−1∑
n=0

n|fm[n]|q
)
/

(
N−1∑
n=0

|fm[n]|q
)〉

(24)

γmq =
(∫

t|ψm(t)|q dt
)
/

(∫
|ψm(t)|q dt

)
(25)

where the discrete center cmq is integer, the continuous center γmq is real, and 〈·〉 in this context
denotes rounding to the nearest integer. Identifying J = 0 and J > 0 with the discrete and continous
centers respectively for the filters and functions, that is, identifying ψm(tn) with y

(J)
m [n] for J > 0

and fm[n] with y
(J)
m [n] for J = 0 as in Section II-B, and then applying numerical integration for

the case of the continuous functions (see examples below), compute the parameter estimates as the
outputs of the function

tdc(fm; J, q) =
{
cmq if J = 0
γmq if J > 0.

(26)

For q = 1 and q = 2, the weighted centers correspond to the centers of mass and energy, respec-
tively. For q = ∞, it can be redefined to be the abscissa corresponding to the ordinate with peak
magnitude.

With the weighted centers, define the pth discrete and continous time domain moments

kmpq =
N−1∑
n=0

(n− cmq)
pfm[n] (27)

κmpq =
∫

(t− γmq)
pψm(t) dt (28)
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where both kmpq and κmpq are real. Since ψm(tn) ≈ y
(J)
mn at tn = nM−J−1, the continuous integral

can be numerically approximated by a discrete sum∫
(t− γmq)

pψm(t) dt ≈ M−J−1
∑

n

(tn − γmq)
py(J)

mn (29)

or with a particular quadrature rule such as Simpson’s rule or the trapezoidal rule. Again, identi-
fying J = 0 and J > 0 with the discrete and continous versions respectively, compute the estimates
after J iterations as the outputs of the function

tdm(fm; J,p, q) =
{
kmpq if J = 0
κmpq if J > 0.

(30)

More explicitly, compute

tdm(fm; J,p, q) =

{ ∑N−1
n=0 (n− cmq)

py
(J)
mn if J = 0

numint((tn − γmq)
py

(J)
mn,M−J−1) if J > 0

(31)

where the function numint for numerical integration accepts a vector first argument for the ordinate
values to be integrated and a scalar second argument for the uniform increment of the abscissa
values. By default, assume that the centers from tdc(f ; J, q) and the moments from tdm(f ; J,p, q)
are determined with the same J and the same q = 2, and that the numerical integration is performed
according to the trapezoidal quadrature rule. For convenience, summarize the notation with output
vector parameters for input matrix filter banks with

γJ ≡ [γmJ ] = tdc(F; J) (32)
κJp ≡ [κmJp] = tdm(F; J,p) (33)

also suppressing both the default q = 2 and the notation for the distinctions between discrete and
continous centers cm and γm and moments km and κm for J = 0 and J > 0.

H. Vanishing Moments Numbers vmn(F)

Now consider the numerically observed vanishing moments number for fm to be the integer νmJ

obtained from the sequence of real {κmJp|p = 0, 1, . . . } using an absolute zero criterion

νmJ = vmn(fm; J, εabs) = min
p|χ=1

(p + 1)χ(|κmJp| > εabs) (34)

with tolerance εabs ≈ 0 such as εabs = 1 × 10−4, or using a relative jump criterion

νmJ = vmn(fm; J, εrel) = min
p|χ=1

(p + 1)χ(|κm,J,p+1/κmJp| > εrel) (35)

with tolerance εrel >> 1 such as εrel = 1 × 104, where χ(·) is a Boolean logic indicator function
returning the truth value χ ∈ {0, 1} for its expression argument.

For bandpass or highpass wavelet filters, all values of p such that χ = 1 are examined. However,
for lowpass scalet filters, all p such that χ = 1 excluding p = 0 are examined as necessitated
by the fact that the lowpass filter must have a nonvanishing zeroth moment. For the matrix F,
assume that f0 is a lowpass filter and test it with p ≥ 1; assume that all other fm are bandpass or
highpass filters and test them with p ≥ 0. Denote the ε-tolerant vanishing moments numbers after
J iterations of the filter bank F as the 1 ×M vector

νJ ≡ [νmJ ] = vmn(F; J, ε). (36)
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By default, assume for vmn(·; ·, ·) that J = 2 and ε = εabs with the absolute zero criterion test for
F normalized to η = R where the upsampling rate R = M if M > 1 else R = 2 if M = 1. Again,
note that the moments κJp are real M -vectors for a given J and p while the numbers νJ are integer
M -vectors for a given J . For examples demonstrating the distinction between estimating νJ with
the absolute zero versus relative jump criteria, refer to Figures 2–4 of [13].

I. Time Domain Regularity tdr(F)

Various definitions and methods are available in the literature for estimating the regularity of
a function. Here we discuss a previously unpublished method for estimating the time domain
regularity, denoted tdr(F), of a filter bank’s estimated continous time impulse responses y(j)

m [n]
generated iteratively as explained in Section II-B from its discrete time impulse responses fm[n].
This method was first used in Version 4.0a3 (12-Jan-1994) of the WAVB3X Software Library [10]
with a summary of the method reported in [13]. An iterative estimate of the time domain regularity
can be evaluated by applying to Rioul’s definition of Holder regularity for subdivision schemes [6]
a general procedure for determining the convergence order of a sequence of functions.

Assume an arbitrary continuous time function y(t) approximated at iterations j and time points
tn = nhj by y(j)[n] with error function e(j)[n] = y(tn) − y(j)[n] where tn is real, n is integer, and
hj > 0 is real hj → 0 as j → ∞. Let e(j)[n] = O(hq

j) as hj → 0 mean that there exist constants C
and h0 such that |e(j)[n]| ≤ Chq

j , ∀n, ∀hj ≤ h0. We can think of the corresponding continous e(t)
as an error function for which we desire ideally e(t) ≈ 0, ∀t.

Now evaluate e(j)[n] for the sequence {hj | j = 0, 1, 2, . . . } where h0 > h1 > h2 > · · · > 0.
In particular, take hj = h0/c

j for j = 1, 2, . . . where c is another arbitrary constant c > 1, say
c = R appropriate for iterative sequences generated by upscaling with filters at rate R = M from
an M -band filter bank with M ≥ 2. Define ej = maxn |e(j)[n]| so that ej ≤ Chq

j and ej+1 ≤ Chq
j+1.

Then derive

ej
ej+1

≈ Chq
j

Chq
j+1

=
(h0/c

j)q

(h0/cj+1)q
= cq (37)

for which we can estimate

qj =
log(ej/ej+1)

log(c)
(38)

with ideally q = limj→∞ qj .
To account for convergence that is nonmonotonic or even oscillatory, we can use smoothers such

as the median to define the estimate

q̂j = med{qi | i = j0, j0 + 1, . . . , j} (39)

as well as the lower and upper bounds

q
j

= min{qi | i = j0, j0 + 1, . . . , j} (40)

qj = max{qi | i = j0, j0 + 1, . . . , j} (41)

to provide checks on the behavior of the convergence. Note that the bounds are computed for
j ≥ j0 to allow for initialization transients, for example with j0 = 2. After J iterations, obtain
the final estimate q̂J bounded below by q

J
and above by qJ . The number of iterations J can be

determined by a convergence criterion such as

|q̂j − q̂j−1| < ε (42)
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for some absolute error tolerance ε or else J can be fixed by a predetermined value. This approach
provides an iterative method by which to estimate the convergence order q without assuming its
value a priori and without knowing the constant C.

Now let ∆p be the finite difference operator [1, pg.255] of order p. Let y(j)[n] be the jth iterative
estimate at tn = nhj of the function y(t) for which we now assume the regularity ρ = p + q with
integer p and real q. Then we can use the method described above to estimate q in the sequence

ej = max
n

|∆py(j)[n]|/hp
j ≤ hq

j (43)

by testing iterates y(j)[n] with known p or an appropriate range of p. In fact, an effective automated
algorithm can be implemented as an iterative search for pk over k = 1, 2, . . . where for each pk a cycle
of iterations over j = 0, 1, 2, . . . , Jk is performed with the requirement that Jk ≥ 2. Equation 42
provides a test of convergence of q̂j which determines Jk for a given cycle with pk at iteration k.
Now let

ρk = pk + q̂Jk
(44)

denote the regularity estimate obtained with Jk iterations at finite difference order pk. Values for
pk+1 can be set from those for pk by the recursion

pk+1 =
{
pk + 1 if dρke + 1 > pk

pk − 1 if dρke + 1 < pk
(45)

with initialization p1 = 2 and termination if

dρke + 1 = pk (46)

or if k exceeds a predetermined maximum number of iterations. Then denote the final regularity
estimate ρJp where J = Jk and p = pk from the final iteration k. Alternatively, both J and p
can be fixed and predetermined. Finally, for an iterated N ×M filter bank F, compute the time
domain regularity for each band filter as explained above using the function

ρJp ≡ [ρmJp] = tdr(F; J,p) (47)

where the output parameter estimate ρJp is a real M -vector.
Although this method does not insure monotonic convergence, it does provide faster convergence

than the method described by Rioul [6, eqn.11.1]. Furthermore, both of Rioul’s methods, the
iterative estimate for the lower bound [6, eqn.11.1] and the noniterative estimate for the upper
bound [6, eqn.13.1], require that the filter roots at z = −1 must be deconvolved prior to estimation
of the filter’s regularity. Thus, the iterative method presented here has the advantage that the
roots at z = −1 do not need to be deconvolved prior to evaluation of the regularity estimate. As a
consequence, it may be more appropriate in certain situations as an iterative estimate of the lower
and upper bounds. However, when filter roots are available such as when filters are designed by
spectral factorization, it is convenient to compute regularity estimates with Rioul’s noniterative
method for the upper bound. Therefore, ρ = tdr(F) denotes estimates computed with Rioul’s
noniterative upper bound from the roots of F(z) (after deconvolving or otherwise excluding roots
at z = −1), while ρJp = tdr(F; J,p) denotes estimates computed with Taswell’s iterative estimate
from the coefficients of F. For examples with an experiment comparing these various estimates,
refer to Table I of [13].
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J. Frequency Domain Selectivity fds(F)

Define the frequency domain selectivity, denoted fds(f) for the lowpass filter f with frequency
response F(ω), with reference to an ideal M th-band lowpass filter i with response

I(ω) =
{

1 if ω ∈ [0, π/M ]
0 if ω ∈ (π/M, π]

(48)

on the frequency interval [0, π]. Normalize the test filter f with η = 1 =
∑

n f [n] so that F(ω) = 1
at ω = 0 (unit gain frequency response at DC). Let δ1 and δ2 be the passband and stopband
magnitude deviation tolerances, respectively, with values such as δ1 = δ2 = 1 × 10−3.

Then define the passband edge ω1, stopband edge ω2, and transition bandwidth β with

ω1 = min
ω|χ=1

ωχ(|1 − |F(ω)|| > δ1) (49)

ω2 = max
ω|χ=1

ωχ(|F(ω)| > δ2) (50)

β = ω2 − ω1 (51)

respectively. These parameters then permit definition of the frequency domain selectivity as the
portion of the normalized passband interval that correctly selects for the desired frequencies, that
is, the ratio

(π/M − β)/(π/M) = 1 − βM/π. (52)

However, such a definition does not adequately account for the magnitude of the deviation from
ideal. Thus, define the area α of deviation from ideal as

α =
∫ π

0
|I(ω) − |F(ω)|| dω (53)

and the frequency domain selectivity as

ς = fds(f) = (π/M − α)/(π/M) = 1 − αM/π (54)

which represents the portion of the normalized passband area of the magnitude frequency response
that correctly selects for the desired frequencies.

Frequency domain selectivity for the M -band filter bank F can be defined in a similar manner
with reference to an ideal uniform M -band filter bank I with lowpass i0, bandpass {im | m =
1, . . . ,M − 2}, and highpass iM−1 filters with ideal frequency responses

I0(ω) =
{

1 if ω ∈ [0, π/M ]
0 if ω ∈ (π/M, π]

(55)

Im(ω) =




0 if ω ∈ [0,mπ/M)
1 if ω ∈ [mπ/M, (m+ 1)π/M ]
0 if ω ∈ ((m+ 1)π/M, π]

(56)

IM−1(ω) =
{

0 if ω ∈ [0, (M − 1)π/M)
1 if ω ∈ [(M − 1)π/M, π]

(57)

for the frequency interval [0, π]. Then the area of deviation from the ideal for the mth filter

αm =
∫ π

0
|Im(ω) − |Fm(ω)|| dω (58)
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permits definition of the frequency domain selectivity as

ςm = fds(fm) = 1 − αmM/π (59)

for the band filter fm, and as

ς ≡ [ςm] = fds(F) (60)

for the filter bank F. The integral in Equation 58 can be computed with simple numerical quadra-
ture by trapezoidal rule as explained for the integrals in Section II-H. Values for filters reported here
represent numerical estimates based on the above definitions using magnitude frequency response.
There exist analogous definitions using decibel frequency response.

K. Time Frequency Uncertainty tfu(F)

Discrete time frequency uncertainty, denoted tfu(F) for the N ×M filter bank F, was computed
with various modifications and extensions of the method of Haddad et al. [2, pg.1412] and reported
as the areas of the Heisenberg uncertainty boxes with width σn and height σω for each band filter
fm in the filter bank. For the time domain energy, mean, and variance, compute

En,m =
N−1∑
n=0

|fm[n]|2 (61)

µn,m = E−1
n,m

N−1∑
n=0

n|fm[n]|2 (62)

σ2
n,m = E−1

n,m

N−1∑
n=0

(n− µn,m)2|fm[n]|2 (63)

for m = 0, . . . ,M − 1. For the frequency domain with discrete Fourier transform Fm(ω) of the
band filter fm[n], it is necessary to determine the corresponding energy, mean, and variance values
differently for the lowpass, bandpass, and highpass filters. For the energy, compute

Eω,m =
{ ∫ π

−π |Fm(ω)|2 dω if 0 ≤ m ≤ M − 2∫ 2π
0 |Fm(ω)|2 dω if m = M − 1

(64)

where the interval of integration differs only for the highpass filter. For the mean, compute

µω,m =




E−1
ω,m

∫ π
−π ω|Fm(ω)|2 dω if m = 0

E−1
ω,m

∫ π
−π |ω| |Fm(ω)|2 dω if 1 ≤ m ≤ M − 2

E−1
ω,m

∫ 2π
0 ω|Fm(ω)|2 dω if m = M − 1

(65)

where the integrand differs for the bandpass and the interval differs for the highpass. For the
variance, compute

σ2
ω,m =




E−1
ω,m

∫ π
−π(ω − µω,m)2|Fm(ω)|2 dω if m = 0

E−1
ω,m

∫ π
−π(|ω| − µω,m)2|Fm(ω)|2 dω if 1 ≤ m ≤ M − 2

E−1
ω,m

∫ 2π
0 (ω − µω,m)2|Fm(ω)|2 dω if m = M − 1

(66)

where again the integrand differs for the bandpass and the interval differs for the highpass. Because
the energy normalizations have been computed for each measure in its respective time or frequency
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domain, the above expressions should be valid regardless of the normalization constant used by the
discrete Fourier transform. Now determine the time frequency uncertainty

υm = σn,mσω,m (67)

as the product of the standard deviations in the time and frequency domains. For all discrete time
filters, υ ≥ 0.5 with the optimal value 0.5 approached by binomial filters that tend to Gaussian
functions in the limit [2]. Finally, let

υ ≡ [υm] = tfu(F) (68)

denote the time frequency uncertainty for all filter bands in the filter bank. Note that the expressions
introduced here apply to all bands of the filter bank including the highpass band omitted by
Haddad et al. [2], and that these expressions differ from theirs with respect to the DFT-independent
normalization used for all bands, as well as the integrands and intervals of integration used for the
bandpass and highpass bands.

L. Conversion of M -Vector to Scalar Valued Parameters

Most of the evaluation test parameters presented here have been defined as 1 × M vectors
for N × M filter banks. Each element of the M -vector parameter provides information about
the corresponding filter band in the filter banks. However, optimizations and/or comparisons
are usually performed on scalars rather than vectors. As such, vector valued parameters can be
readily converted to scalar valued parameters by computing a variety of statistics measuring central
tendency such as the mean, weighted mean, or median, or those revealing extremes such as the
minimum or maximum. With regard to extremes, it is often most appropriate to choose the extreme
which corresponds to the worst case. For example, if the vector valued parameter is an error e,
then the corresponding scalar valued parameter is e = maxm em. Analogously, for the delay d and
uncertainty υ, the worst case is the maximum, whereas for the regularity ρ and selectivity ς, it is
the minimum.

M. Experiments with Test Evaluations of Filter Banks

Test evaluations were performed on filter banks with coefficients that were either generated from
computational algorithms or obtained from published tables. Naming conventions established in
[12] and further elaborated in [15], [17] for the filter banks there have been extended to apply to the
various other filter banks tested here. Briefly, each 2-band family of filters has been named with
an identifying acronym followed by the parameters (Na, Ns;Ka,Ks) in the biorthogonal cases and
by (N ;K) in the orthogonal cases where N is the number of filter coefficients, K is the number of
filter roots at z = −1, and the subscripts ·a and ·s refer to the analysis and synthesis filter banks,
respectively. The M -band families have been named with an acronym followed by the parameters
(N ;M ;K).

The families DRBBR, DCOMS, RROMS, and HRNSB were all generated from computational al-
gorithms based on filter roots. The Daubechies Real Biorthogonal Balanced Regular DRBBR(10,10;5,5)
and Daubechies Complex Orthogonal Most Symmetric DCOMS(22;11) filter banks were com-
puted according to the method of Taswell [12], [15]. The Rioul Real Orthogonal Most Selective
RROMS(20;2), RROMS(20;6), and RROMS(20;10) filter banks were computed in the following
manner: i) Roots for the corresponding product filter were computed by Rioul’s algorithm remezwav
[8, pg:558]. ii) Roots for the minimum phase spectral factor were selected by choosing all the roots
of the product filter inside the unit circle together with those roots on the unit circle at half their
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multiplicity. iii) These minimum phase spectral factor roots were then used to construct the coef-
ficients for the RROMS(20;K) filter banks. Finally, the Hermite Real Nonorthogonal Symmetric
Binomial HRNSB(5;5;4) filter bank was constructed from its roots according to the Z-transform
definition of Haddad et al. [2, pg:1414].

The family SRORA was the only one generated from computational algorithms based on lattice
angles. The Sherlock Real Orthogonal Random Angles SRORA(N ;2;1) filter banks were computed
with both the original algorithm orthogen [9, p.1718] and the corrected algorithm [16] using J =
N/2 random angles αj ∈ [0, 2π), uniformly distributed and (π/4)-sum normalized.

All other families were obtained from published tables listing filter coefficients. Those for the
Heller Real Orthogonal M -band K-regular HROMK(8;4;2) filter bank were entered manually from
the table in [3, pg:518]. Those for the various Nayebi-Barnwell-Smith filter banks were input from
the tables in [5] by optical scanning and conversion to text characters with optical character recog-
nition software. Coefficients published in [3] are tabulated in fixed precision to only four decimal
places, whereas those in [5] are tabulated in full floating point precision with six digit mantissa
and two digit exponent. Accuracy of the coefficients input was double-checked by painstaking com-
parison of the data between the printed page and computerized file displayed on monitor. This
comparison was accomplished by two individuals with one person reading one format and the other
person crosschecking the other format.

Both A and S were computed for the DRBBR filter banks which were the only biorthogonal
filter banks tested. If only A was computed or tabulated without S for any of the other orthogonal
or nonorthogonal filter banks, then S defaulted to the paraconjugate of A. All filter banks were
η-normalized with η =

√
M except for the HRNSB filter banks which were unit band energy

normalized. Experimental evaluation test results reported here were computed with Version 4.5a2
of the WAVB3X Software Library [10] running in Version 5.1.0 of the MATLAB technical computing
environment [4] on a Toshiba Tecra 720CDT with the Windows 95 operating system.

III. Results

A. Tests on Filter Banks Generated by Computational Algorithms

Tables I and II present the parameter estimates for the DRBBR(10,10;5,5) and DCOMS(22;11)
filter banks. Both of these examples demonstrate the performance of the evaluation tests on filter
banks with coefficients generated to double precision by an algorithm for which there is a high
degree of confidence regarding expected results [12], [15]. Both examples are minimum-length
maximum-flatness 2-band Daubechies wavelet filter banks. For both, the experimentally observed
delay d equals the theoretically expected value N − 1 where N is the length. Analogously, the
empirical vanishing moments numbers ν equal the expected values [0,K] where K is the number
of lowpass filter zeros at z = −1. Both examples have reconstruction errors within the order of
machine precision at 10−16 ≤ e ≤ 10−15. Additional errors for the biorthogonal example confirm
presence of 2-shift biorthogonality with e = 4.4 × 10−16 but absence of 2-shift orthogonality with
e = 4.9×10−1. The analogous errors for the orthogonal example confirm both 2-shift biorthogonality
and orthogonality with e = 2.4 × 10−15.

Table III presents similar parameter estimates for the RROMS(20;K) filter banks forK = 2, 6, 10.
These 2-band orthogonal wavelet filter banks [8] are related to the Daubechies collection [15] but
do not have maximum flatness unless K = N/2, which is K = 10 for this sequence of examples with
N = 20. Rioul and Duhamel [8] provided an algorithm remezwav only for the coefficients and roots
of the nonorthogonal product filter, but did not provide nor demonstrate results of an algorithm for
the orthogonal spectral factor filters that would be used for an orthogonal wavelet filter bank. Using
the method for the orthogonal factors described in Section II-M with results as demonstrated in
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Table III, there is a significant loss in orthogonality ranging from good orthogonality with negligible
error at e ≈ 10−12 for K = 10 to poor orthogonality with significant error at e ≈ 10−2 at K = 2.
The comparable reconstruction errors imply that perfect reconstruction can be achieved at K = 10
but not at K = 2 for N = 20. The stated motivation for the design of these filters was the increase
of selectivity at the expense of regularity [8]. However, as measured by the selectivity ς, the increase
is relatively insignificant from ς = 0.839 to ς = 0.865, while there is simultaneously a significant
decrease in regularity from ρ = 3.34 to ρ = 0.46, and a significant increase in uncertainty from
υ = 1.28 to υ = 2.15, as the zeros at z = −1 decrease from K = 10 to K = 2.

Table IV presents the parameter estimates for HRNSB(5;5;4), a nonorthogonal filter bank with
N = M = 5 and K = 4. This filter bank was constructed from symmetric binomials such that
there are K−m zeros at z = −1 and m zeros at z = 1 for bands m = 0, 1, . . . ,M − 1 with an ideal
value of 0.5 expected (in the limit as K → ∞) for the time frequency uncertainty [2]. The empir-
ical estimate υ = [.503, .555, .513, .555, .502] confirmed this expectation. However, the frequency
selectivity was poor with ς = −0.479 and as expected, the filter bank was both nonreconstructing
and nonorthogonal with significant reconstruction, biorthogonality, and orthogonality errors.

All of the preceding examples have demonstrated tests on filters generated with computational
algorithms based on the filter polynomial roots. In contrast, Figure 1 displays results for an example
that demonstrates tests on filters generated with computational algorithms based on the filter lattice
angles. The M -shift orthogonality error moe(F) is displayed as a function of the number of lattice
angles J = N/2 for the SRORA(N ;2;1) filters computed with either the original algorithm (curve
with ‘+’ markers) or the corrected algorithm (curve with ‘o’ markers). The original algorithm
orthogen was not tested, and thus never validated, for J ≥ 4 by the original authors [9]. The
results displayed in Figure 1 demonstrate clearly that the original algorithm does not generate
orthogonal wavelets for J ≥ 4 whereas the corrected algorithm [16] resolves the problem. This
problem was detected by using moe(F) as an independent evaluation test for the experimental
verification of the filter’s theoretical specifications.

B. Tests on Filter Banks Obtained from Published Tables

Table V presents parameter estimates for HROMK(8;4;2) which is an orthogonal M -band wavelet
filter bank with N = 8, M = 4, and K = 2 zeros at z = −1 for the lowpass band filter. Despite
the fixed precision of the filter bank coefficients to only four decimal places in the published ta-
bles [3], reconstruction, biorthogonality, and orthogonality were nevertheless confirmed with errors
e < 4 × 10−5. However, selectivity was poor at ς = −0.216 when compared with ς = 0.847
for DCOMS(22;11), while uncertainty was good at υ = 0.928 when compared with υ = 2.15 for
RROMS(20;2).

Table VI presents a summary of test results for reconstruction error and delay for all filter banks
tabulated in [5]. Despite the increased floating point precision with mantissa and exponent of these
tabulated coefficients relative to the fixed precision of those tabulated in [3], only the example
labeled “IV cosine modulated” achieved a comparable level of reconstruction with e = 6 × 10−5.
There were four additional examples (II, V, VIII, and IX) that were approximately reconstructing
with 10−4 ≤ e ≤ 10−3. However, there were two examples (III and VII) that were not reconstructing
with e ≥ 10−1. In one of these examples (VII), the observed delay d = 29 did not equal the design
delay ∆ = 15.

IV. Discussion

This report has presented detailed computational methods with validating experimental results
for a comprehensive suite of evaluation tests that characterize the numerical properties of M -band
filter banks represented asN×M matrices. By characterizing the numerical performance of analytic
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designs, these tests facilitate the experimental verification of theoretical specifications. All of the
tests defined here are novel tests that apply to each of all bands of the filter banks. Thus, the tests
return numerical estimates of a 1 × M vector parameter in which the mth element corresponds
to the mth column vector filter band of the N × M matrix filter bank. These M -vector valued
estimates can be reduced to scalar valued estimates as explained in Section II-L.

All of the empirical evaluation tests introduced here, including the Kronecker delta error (Sec-
tion II-C), M -shift biorthogonality error (Section II-D), M -shift orthogonality error (Section II-E),
time domain centers and moments (Section II-G), vanishing moments numbers (Section II-H), time
domain regularity (Section II-I), and frequency domain selectivity (Section II-J), have been devised
independently by the author with the exception of the M -band reconstruction error (Section II-F)
and time frequency uncertainty (Section II-K) which have been implemented as modifications and
extensions of those in [5] and [2], respectively. These evaluation tests have been demonstrated
and validated (Section III) on a wide variety of filter banks with coefficients either generated by
computational algorithms or obtained from published tables.

This work forms part of a major project to improve the scientific and engineering reproducibility
of experiments with filter banks and transform algorithms by developing and using an evaluation
methodology that addresses both specification and verification for each of three hierarchical stages
consisting of filter bank coefficients, single-level convolutions, and multi-level transforms [11], [14].
Within the scope of this framework, this report has focused on the numerical verification of the
filter bank coefficients. Complete verification of filter bank coefficients would benefit from both
a comprehensive suite of numerical tests as well as graphical displays. An extensive set of multi-
color visual plots for the filter bank examples demonstrated in this report can be viewed at the
web site www.toolsmiths.com on the various pages devoted to the FirWav Filter Library. The
plots viewable there include those corresponding to the numerical tests of this report as well as
displays of the filter banks in the time domain, complex z domain, and frequency domain including
magnitude, decibel, phase, unwrapped phase, phase delay, and group delay responses.

As often published in the literature, filter banks are characterized only by frequency domain
plots of either magnitude or decibel response but not both. Nevertheless, failing to display both
plots may hide important features not revealed by just one of the plots. Moreover, errors, whether
reconstruction, orthogonality, or biorthogonality, are often not reported with numerical values.
Yet it is difficult to make comparisons with only visual inspection of, for example, the magnitude
frequency response plots. Thus, graphical displays (with the exception of Figure 1 which plots errors
as a function of filter order) have been purposefully avoided in this report. Instead, attention has
been directed at use of a comprehensive suite of numerical tests with values reported in tables.
This approach readily facilitates explicit comparison of given filter banks.

While evaluation tests for estimating parameters may also be useful in optimizing filter bank
designs [15], their primary use as demonstrated and advocated here focuses on the verification of
coefficients rather than the generation of coefficients. Filter bank coefficients may be published
in tables and then read and transcribed by people prior to use on computers rather than always
being regenerated by computational algorithms. These coefficients may also be stored in data files,
transmitted through communication channels, or perhaps even coded and decoded as part of a
self-extracting data decompression system. Verification tests are thus necessary to detect errors
that may arise at any step in any of these processes. Even if coefficients are always regenerated by
a computational algorithm, the algorithm may be based on a certain method or design parameter
that may be completely unrelated to a different parameter of interest.

Therefore, a comprehensive suite of characterization and verification tests is necessary to evaluate
the numerical performance of the filter coefficients on all relevant criteria. Moreover, in the general
case of insuring reproducibility of filter algorithms and filter coefficients, any suite of tests that
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sufficiently characterizes and verifies the filter coefficients would suffice. However, in the specific
case of making a claim about a certain filter characteristic, then the only test that is relevant is
the test for that particular characteristic. For example, if a filter is claimed to be orthogonal, then
the orthogonality test is the one that is relevant. Finally, empirical tests can be used to evaluate
for equivalent performance of filter families with respect to certain characteristics within given
tolerances [17].

Tables I, II, V, and IV demonstrated respectively examples of real biorthogonal 2-band, complex
orthogonal 2-band, real orthogonal 4-band, and real nonorthogonal 5-band filter banks for which
observed values were consistent with expected values for parameters. These examples, and many
others in [13], [15], [17] and elsewhere, serve to validate the evaluation tests. However, Tables VI
and III and Figure 1 all demonstrated examples with significant discrepancies between analytical
design and experimental evaluation parameters. With regard to the discrepancies in the results for
Table VI which involved filter banks with tabulated coefficients published in [5], one of the authors,
M. J. T. Smith, suggested1 that the most likely source of the problem could be “flipped signs”
incurred when the original manuscript was typeset by the printer. With regard to the discrepancies
in the results for Table III which involved filter banks with computed coefficients, it is possible
that the loss of orthogonality could be attributed to numerical instabilities in the computation of
the double roots on the unit circle output by the function remezwav. This instability impacted the
orthogonal spectral factor filters but not the nonorthogonal product filter. Finally, with regard to
the discrepancies depicted in Figure 1, it is apparent as established by the corrected algorithm [16]
that the original algorithm orthogen was not consistent with the original authors’ mathematical
and diagrammatical specification [9].

These three sets of examples with discrepancies demonstrate situations where the empirical eval-
uation tests detected what can be called transmission, interpretation, and implementation errors,
respectively. Notably in the second and third cases in contrast to the first case, the errors appeared
in the published literature, not because of an alleged transmission (typographical or communica-
tion) error, but because of a failure to require, perform, and report any independent evaluation
tests with conclusions based on empirical results. Instead, conclusions were merely assumed to
be true based on theoretical expectations (analytic design and algorithm specification) without
experimental observation and verification. For example, if Sherlock and Monro [9] had performed
independent tests of orthogonality for all J including J ≥ 4, it is probable that they would have
detected the implementation error in their algorithm orthogen. Analogously, if Rioul and Duhamel
[8] had computed the orthogonal spectral factors and numerically evaluated their orthogonality, it
is probable that they would have detected the interpretation error for their algorithm remezwav.
As a consequence, they probably would not have used the term orthogonal in the title of their
paper. Alternatively, they could have offered the following discussion of the pseudo-orthogonality
of their filter banks.

It remains unclear whether orthogonal spectral factors can be computed in a numerically stable
manner with the algorithm remezwav, or whether the roots output by remezwav can be sufficiently
refined by a subsequent root polishing algorithm prior to the spectral factorization. An opposing
interpretation would be to consider the filter banks orthogonal or pseudo-orthogonal even though
the error deteriorates, for the example in Table III, from negligible at 10−12 for RROMS(20;10) to
significant at 10−2 for the RROMS(20;2). However, recall that the RROMS(20;10) is equivalent
to a Daubechies minimum-length maximum-flatness filter bank and that the claimed advantages
of the RROMS(20;2) in terms of increased selectivity do not appear to be significant enough to
compensate for the loss of orthogonality, regularity, uncertainty, et c., as demonstrated in Table III.

1M. J. T. Smith, personal communication, February 1998.
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In any event, the trade-offs involved should be explicitly noted in any discussion of the filter banks’
advantages and disadvantages.

The various descriptive terms such as significant, moderate, and negligible have been used here
in a relative sense. Thus, they depend on the context of the problem and the judgement of the
investigator. Generally, as used here, the terms significant and nonreconstructing have been loosely
applied to errors e ≥ 10−2, moderate and approximate reconstructing to errors 10−2 ≥ e ≥ 10−4,
minimal and near-perfect reconstructing to errors 10−5 ≥ e ≥ 10−10, and finally negligible and
perfect reconstructing to errors e ≤ 10−10. These rankings are based on the assumption that the
order of machine precision corresponds to 10−16 ≤ e ≤ 10−15. Additional examples validating and
demonstrating the filter bank evaluation tests elaborated here can be found in [13], [15], [17]. How-
ever, the brief survey of examples that have been analyzed and reported here has demonstrated that
papers in the published literature contain errors of transmission, implementation, and interpreta-
tion. These errors were not detected by the original authors, referees, and editors. It is unlikely
that additional errors, whether past or future, will be detected and/or prevented without the use
of independent evaluation tests which require that as much attention and importance be accorded
to experiment as to theory.

A fundamental tenet of investigative science and engineering requires that conclusions must be
based on methods and results that are reproducible and valid. The general notions of experimental
validity and reproducibility can be said in one sense to correspond, respectively, to the specific
notions of accuracy (bias) and precision (variance). To improve the validity and reproducibility of
filter bank investigations, empirical tests for the evaluation of filter banks should be required for
the characterization and verification of the numerical performance of filter bank coefficients. Such
an evaluation enables the comparison of filter banks and optimization of their designs, but more
importantly, facilitates the detection and prevention of errors and discrepancies in the computed
or tabulated coefficients and the generating algorithms for those coefficients. Automated detec-
tion of errors and discrepancies with appropriate experimental evaluation methodologies becomes
increasingly important in an era of increased pressure on the peer review process with the accom-
panying increased numbers of mistakes appearing in the published literature. As a consequence,
these empirical tests will insure greater reproducibility and validity of results and the conclusions
based on those results. The importance of an evaluation methodology, with both a specification
and a verification component, can be neither ignored nor trivialized.
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TABLE II
DCOMS(22;11) Filter Bank Parameter Estimates.

Function Band 0 Band 1
mrd(A,S) 21 21
mre(A,S) 2.89e-015 2.44e-015
mbe(A,S) 2.44e-015 2.44e-015
moe(A) 2.44e-015 2.44e-015
fds(A) 0.8465 0.8465
tfu(A) 0.8357 0.8357
tdr(A; J = 6,p = 5) 3.5658 3.5904
tdm(A; J = 6,p = 5) -1.29e-013 9.74e-015
tdc(A; J = 6) 10.4258 10.4258
vmn(A; J = 6) 0 11

TABLE III
RROMS(20;K) Filter Bank Parameter Estimates.

RROMS(20;2) RROMS(20;6) RROMS(20;10)
Function Band 0 Band 1 Band 0 Band 1 Band 0 Band 1
mrd(A,S) 19 19 19 19 19 19
mre(A,S) 9.47e-003 9.47e-003 3.34e-003 3.34e-003 9.01e-013 9.01e-013
moe(A) 9.47e-003 9.47e-003 3.34e-003 3.34e-003 9.01e-013 9.01e-013
fds(A) 0.8650 0.8650 0.8592 0.8592 0.8391 0.8391
tfu(A) 2.1513 2.1513 2.0113 2.0113 1.2777 1.2777
tdr(A; J,p) 0.4627 0.6201 1.5782 1.1722 3.4124 3.3431
tdm(A; J,p) 3.00e-001 2.10e+000 -3.07e-001 -4.95e-015 -4.85e-001 2.72e-014
tdc(A; J) 1.3779 9.5026 1.6979 9.4993 2.6665 9.4912
vmn(A; J) 0 2 0 6 0 10

J = 6 for all K while p = 2, 3, 5 for K = 2, 6, 10 respectively.

TABLE IV
HRNSB(5;5;4) Filter Bank Parameter Estimates.

Function Band 0 Band 1 Band 2 Band 3 Band 4
mrd(A,S) 4 4 4 4 4
mre(A,S) 6.05e-001 3.43e-001 6.95e-001 3.43e-001 6.05e-001
mbe(A,S) 4.88e-002 0.00e+000 4.88e-002 0.00e+000 4.88e-002
moe(A) 4.88e-002 0.00e+000 4.88e-002 0.00e+000 4.88e-002
fds(A) 0.0013 -0.4616 -0.4793 -0.4616 0.0013
tfu(A) 0.5029 0.5550 0.5131 0.5550 0.5029
tdr(A; J = 3,p = 1) -0.3906 -0.3906 -0.3906 -0.3906 -0.3906
tdm(A; J = 3,p = 1) -8.73e-019 -2.65e-001 2.71e-018 -1.16e-018 -5.73e-018
tdc(A; J = 3) 0.5008 0.5008 0.5008 0.5008 0.5008
vmn(A; J = 3) 2 1 2 3 4
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TABLE V
HROMK(8;4;2) Filter Bank Parameter Estimates.

Function Band 0 Band 1 Band 2 Band 3
mrd(A,S) 7 7 7 7
mre(A,S) 2.91e-005 2.91e-005 3.01e-005 3.70e-005
mbe(A,S) 3.63e-005 2.50e-005 2.50e-005 2.50e-005
moe(A) 3.63e-005 2.50e-005 2.50e-005 2.50e-005
fds(A) 0.4390 -0.2163 -0.2192 0.1440
tfu(A) 0.8462 0.9284 0.5505 0.5313
tdr(A; J = 4,p = 2) 0.4450 0.4450 0.4450 0.4450
tdm(A; J = 4,p = 2) 1.84e-002 -2.31e-001 6.25e-002 -1.64e-002
tdc(A; J = 4) 0.7498 1.3372 0.5711 0.5928
vmn(A; J = 4) 0 2 2 2

TABLE VI
Parameters for Coefficient Tables [5] of Nayebi-Barnwell-Smith Filter Banks.

Analytic Design Numeric Estimate
Table Description N M ∆ mrd(A,S) mre(A,S)

II basic 55 5 54 54 1.08e-003
III low delay 55 5 28 28 1.00e-001
IV cosine modulated 55 5 54 54 6.13e-005
V cosine modulated 96 16 95 95 1.08e-003

VII linear phase 32 2 15 29 4.73e-001
VIII low delay 32 2 15 15 1.25e-004
IX low delay 32 2 7 7 2.98e-004
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Fig. 1. M -shift orthogonality error for filters from corrected and original orthogen.


