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Abstract

A new set of wavelet filter families has
been added to the systematized collection of
Daubechies wavelets. This new set includes com-
plex and real, orthogonal and biorthogonal, least
and most disjoint families defined using con-
straints derived from the principle of separably
disjoint root sets in the complex z-domain. All of
the new families are considered to be constraint
selected without a search and without any eval-
uation of filter properties such as time-domain
regularity or frequency-domain selectivity. In
contrast, the older families in the collection are
considered to be search optimized for extremal
properties. Some of the new families are demon-
strated to be equivalent to some of the older
families, thereby obviating the necessity for any
search in their computation.

1 Introduction

Daubechies wavelet filters with minimal length
and maximal flatness can be readily computed
via spectral factorization of a symmetric posi-
tive polynomial [1]. All of the complex orthogo-
nal, real orthogonal, and real biorthogonal fami-
lies of the Daubechies class computable by spec-
tral factorization have been studied experimen-
tally in the systematized collection developed by
Taswell [2, 3, 4, 5, 6] over a wide range of van-
ishing moment numbers and filter lengths.

In contrast, angular parameterization meth-
ods have usually been demonstrated for wavelets
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with only one vanishing moment (i.e., less than
maximal flatness) and very short length filters
[7, 8] with the exception of [9]. But the lat-
ter only verified orthogonality and vanishing mo-
ment numbers for the filters and did not attempt
any search through the angular parametrization
space for filters with desirable properties.

These comments highlight the essential ques-
tion in the development of an algorithm for the
design of wavelet filters: How much computa-
tional effort (measured by time, flops, and com-
plexity of implementation) should be expended
in the construction of a wavelet filter possess-
ing which properties over which range of filter
lengths? A basic assumption inherent in the sys-
tematized collection of Daubechies wavelets [6]
hypothesizes that the spectral factorization ap-
proach affords the most economical generation
of wavelet filters with the best variety and com-
bination of properties over the widest range of
filter lengths.

The economy of the spectral factorization
method in comparison with the angular param-
eterization method is achieved by the reduced
size of the search space for the filter root codes
[6] relative to that for the filter coefficient an-
gles [7]. In [6], conjectures were made regarding
schemes to enhance the efficiency of the combina-
torial search used in the design algorithm. This
report investigates the next step in the develop-
ment of an efficient algorithm: Can the search
be completely eliminated?

Section 2 clarifies the distinction between con-
straint selected and search optimized filter fam-
ilies, explains the principle underlying the least
and most disjoint root sets, and defines the new
filter families. Section 3 presents examples and
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summaries of results for all of the new filter fam-
ilies. Section 4 concludes that the search can be
eliminated for those search optimized filter fami-
lies for which equivalence has been demonstrated
with constraint selected filter families.

2 Methods

2.1 General Framework

Consider a filter expressed as the complex
z-domain polynomial F (z) with corresponding
vectors for the roots z ≡ [zj ] ∈ Z and the coef-
ficients f ≡ [fn] ∈ F . Associated with F (z), as-
sume there exist three parameters, vector γ ∈ Γ,
vector ξ ∈ Ξ, and scalar λ ∈ Λ, respectively,
that index the filter for a defined family, specify
the particular filter within a search space, and
characterize its properties.

Applying this notation to the orthonormal
Daubechies [1] and Rioul [10] wavelets, γ ≡
[γ1, γ2] = [N, K] represents the number K of
vanishing moments for wavelet filters of length
N = 2K and N > 2K, respectively. For an-
gle space methods [7] to generate orthonormal
wavelets, ξ represents the set of angles that spec-
ifies f for F (z). For binomial space methods
[6] to generate Daubechies wavelets, ξ represents
the set of binary codes that specifies z for F (z).
In both cases, λ represents a criterion obtained
from an individual property or a weighted com-
bination of properties computed from z and/or
f (such as the filter’s time-domain regularity [11]
and phase nonlinearity [6], et c.) that character-
izes F (z).

Thus, γ and ξ determine F (z) and then F (z)
determines λ with the mapping of spaces Γ×Ξ 7→
F × Z 7→ Λ. The parameters γ and ξ that de-
termine F (z) are called the indexing parameter
and specification parameter, respectively. The
parameter λ that is determined by F (z) is called
the characterization parameter. If λ represents
an individual property (rather than weighted
combination of properties), then λ is also termed
a characteristic property of F (z).

2.2 Existence and Uniqueness

Given a defined filter family indexed by γ, as-
sume for fixed γ that a finite sequence of filters
Fi(z) can be generated by and evaluated for cor-
responding sequences, respectively, of specifica-
tion parameters ξi and characterization parame-
ters λi. If Ξ is an unbounded and/or continuous
space, then it can be appropriately bounded and
discretized to permit a countably finite sequence
ξi.

Assuming restriction to a countably finite
space Ξ, then the corresponding spaces F × Z
and Λ are also countably finite. Further assum-
ing a one-to-one invertible mapping and unique-
ness of the elements λi ∈ Λ, then finite countabil-
ity of unique elements for an invertible mapping
implies that it is feasible to search for both ele-
ments λ = mini λi and λ = maxi λi in the range
and select the corresponding filters Fi(z) in the
domain.

2.3 Definitions and Inferences

A filter F (z) is called extremal if it can be
shown to possess a characterization parameter
attaining an extreme manifested by either λ or
λ. A filter F (z) is called search optimized if it is
generated by an algorithm that optimizes λ ∈ Λ
with an exhaustive search to ensure identifica-
tion of either λ or λ. A filter F (z) is called con-
straint selected if it is generated by an algorithm
that specifies sufficient constraints on ξ, f , or
z to ensure uniqueness of F (z) and selection of
F (z) without a search. An indexed set of filters
{Fγ(z)} ≡ {F (z;γ) : γ ∈ Γ} is called a family if
all members of the set are generated by the same
algorithm, a function g(ξ;γ), g(f ;γ), or g(z;γ),
subject to the control of the indexing parameter
γ.

Two different filter families {Fγ(z)} and
{F ′

γ(z)} generated by two different algorithms
g(·;γ) and g′(·;γ) are F-equivalent, or equiva-
lent with respect to the filter coefficient space
F , if ‖fγ − f ′

γ‖ < τ for all γ ∈ Γ with given
error tolerance τ(F). Analogously, {Fγ(z)} and
{F ′

γ(z)} are Z-equivalent, or equivalent w.r.t. the
filter root space Z, if ‖zγ −z′

γ‖ < τ for all γ ∈ Γ
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with given error tolerance τ(Z). Finally, they
are Λ-equivalent, or equivalent w.r.t. the charac-
terization parameter space Λ, if |λγ − λ′

γ | < τ
for all γ ∈ Γ with given error tolerance τ(Λ).

A search optimized filter is necessarily an ex-
tremal filter, whereas a constraint selected fil-
ter may or may not be an extremal filter. If
a constraint selected filter can be shown to be
equivalent to a search optimized filter, then the
constraint selected filter is also an extremal fil-
ter. F-equivalence and Z-equivalence of two fil-
ter families implies Λ-equivalence, but the con-
verse is not true.

2.4 Filter Families

All filter families reported here are named,
defined, and generated according to the con-
ventions, notation, and methods established in
[5, 6] for the systematized collection of wavelet
filters computable by spectral factorization of
the Daubechies polynomial. However, one of
the families in [5, 6], DROLD, has been re-
named DROMD in order to achieve consistency
with the new collection of families introduced
here: DCOMD, DCOLD, DROMD, DROLD,
DRBMD, and DRBLD.

These acronyms abbreviate ‘D’ for
Daubechies, ‘C’ and ‘R’ for complex and
real, ‘O’ and ‘B’ for orthogonal and biorthog-
onal, and ‘LD’ and ‘MD’ for least and most
disjoint. All of these filter families are con-
straint selected. They are compared here with
other filter families from [5, 6] that are search
optimized.

In addition to the factorization rules [6, Sec-
tion 2.4.1] imposing the necessary contraints for
complex orthogonality, real orthogonality, and
real biorthogonality, the least and most disjoint
families are defined according to constraints de-
rived from the principle of separably disjoint root
sets in the complex z-domain. Consider only the
roots of the quotient filter

QD(z) = (z + 1)−2(D+1)PD(z) (1)

where PD(z) is the product filter and D is the
degree of the Daubechies polynomial [6, Sec-
tion 2.1.3]. For spectral factorization, split the

set of roots from Q(z) into two sets of roots {za
k}

and {zs
l } for the analysis and synthesis filters

A(z) and S(z).
These root sets from Q(z) must be disjoint

with

∅ = {za
k} ∩ {zs

l } (2)

(because common roots at z = −1 for both A(z)
and S(z) from P (z) have been excluded from
consideration). Now let {Ca

i } and {Cs
j } denote

finite collections of open convex regions with the
largest area domains that do not intersect yet
still cover the sets {za

k} and {zs
l }, respectively.

More precisely,

∪k za
k ⊂ ∪iCa

i (3)
∪lz

s
l ⊂ ∪jCs

j (4)
∅ = ∩iCa

i (5)
∅ = ∩jCs

j (6)
∅ = (∪iCa

i ) ∩ (∪jCs
j ). (7)

Finally, let C denote the cardinality of the set

{Ca
i : i = 1, . . . , I; Cs

j : j = 1, . . . , J} (8)

as measured by the number C = I +J of regions
covering all the roots of Q(z). Then root sets
{za

k} and {zs
l } are called least and most disjoint

if C is, respectively, the maximum or minimum
possible subject to the constraints of the factor-
ization rules imposed.

Table 1 summarizes the spectral factorizations
for the DCOMD, DROMD, and DRBMD filters
designed with most disjoint root sets. The fac-
torizations for the DCOLD, DROLD, and DR-
BLD filters designed with least disjoint root sets
cannot be summarized as concisely. However,
the corresponding algorithms order the roots by
angle and impose the maximum number of alter-
nations for the assignments in the split to A(z)
and S(z). In addition for the biorthogonal case,
the algorithm for DRBLD was modified further
to devise another family called DRBRD with the
letters ‘RD’ an abbreviation for regular disjoint.
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3 Results

Figure 1 displays spectral factorizations for
each of the least and most disjoint filter fam-
ilies at Ka = Ks = 16 for D = 15. Roots
A(z) and S(z) are marked with green o’s and
red x’s, respectively. As an example of the prin-
ciple of minimizing and maximizing C, observe
that C = 3 for DRBMD and C = 13 for DRBLD.
Note that C 6= 2 for DRBMD because convexity
is required for each of the non-intersecting cov-
ering regions, and C 6= 26 for DRBLD because
the largest area possible is required for each of
the regions.

Figures 2 and 3 display the scalets (green
lines) and wavelets (red lines), respectively, cor-
responding to A(z) for the six examples in Fig-
ure 1. Both the real parts (solid lines) and imag-
inary parts (dotted lines) are shown for com-
plex scalets and wavelets. Figure 4 displays the
biorthogonal scalets and wavelets corresponding
to both A(z) and S(z) for DRBMD, DRBLD,
and DRBRD all at Ka = Ks = 16 for D = 15.

The constraint selected filter families intro-
duced here were compared with the search op-
timized filter families from [5, 6] for Ka =
Ks = 1, . . . , 24. Each member of the
following sets of filter families was demon-
strated to be F-equivalent to the other mem-
bers of the set with τ(F) at machine preci-
sion: {DRBMD, DRBMU, DRBLS, DRBLR},
{DRBRD, DRBMR}, {DROMD, DROMA},
and {DCOMD, DCOMN}. Figures 5–10 display
values of various characteristic properties for the
filter families. The families are listed in the leg-
ends sorted in order of the properties’ median
values for A(z) over the range of the indexing
parameter. These figures and the corresponding
numerical values in tables can be examined to
assess Λ-equivalence.

Figures 5 and 6 present visually dramatic con-
trasting examples of the presence and absence
of Λ-equivalence, respectively, for the orthogo-
nal and biorthogonal families with regard to the
property of time-domain regularity. Examina-
tion of these figures reveals that all of the orthog-
onal families, but none of the biorthogonal fami-
lies, of those that are displayed, are Λ-equivalent

with τ(Λ) < 0.2 for time-domain regularity.
Figures 7 and 8 demonstrate that {DROLD,
DROLU} and {DROLD, DROLA} are each Λ-
equivalent pairs of orthogonal families, respec-
tively, with regard to time-frequency uncer-
tainty and phase nonlinearity. Figures 9 and 10
demonstrate that {DRBMR, DRBLU} is a Λ-
equivalent pair of biorthogonal families with re-
gard to time-frequency uncertainty for A(z), but
there is no such pair with regard to frequency-
domain selectivity. Note that since the pair
{DRBRD, DRBMR} is F-equivalent, then the
pair {DRBRD, DRBMR} is Λ-equivalent with
regard to time-domain regularity and the pair
{DRBRD, DRBLU} is Λ-equivalent with regard
to time-frequency uncertainty.

4 Conclusion

Precise definitions have been introduced for
the various components of a general filter de-
sign framework consisting of indexing parame-
ters γ ∈ Γ, specification parameters ξ ∈ Ξ,
filter coefficients f ∈ F , filter roots z ∈ Z,
characterization parameters λ ∈ Λ, their corre-
sponding spaces, and the mappings between the
spaces. Within this framework, definitions have
also been introduced for filter families that are ei-
ther search optimized or constraint selected and
for their equivalence.

A new set of families was then introduced
using the principle of least and most disjoint
root sets measured by the number C of non-
intersecting open convex regions required to
cover the root sets. The new set of constraint
selected families includes the complex and real,
orthogonal and biorthogonal, least and most dis-
joint families with acronyms DCOLD, DCOMD,
DROLD, DROMD, DRBLD, and DRBMD, as
well as an additional family with acronym DR-
BRD for biorthogonal regular disjoint. These
families were evaluated for both F-equivalence
and Λ-equivalence with search optimized fami-
lies from [6].

Several pairs of both kinds of equivalence were
demonstrated for both orthogonal and biorthog-
onal families. If Λ-equivalence exists between a
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constraint selected family and a search optimized
family with respect to a particular characteriza-
tion parameter λ as an extremal property, then
the constraint selected family can be used to re-
place the search optimized family, and thus to
obviate the necessity for a search in the compu-
tational algorithm. As an important example,
the DROLD (least disjoint) family can be used
as an effective substitute for the DROLA (least
asymmetric) family.

The Λ-equivalent substitution of a constraint
selected family for a search optimized family en-
ables fast computation of those constraint se-
lected family members for which the correspond-
ing search optimized family members would re-
quire excessively slow computation. Because of
the Λ-equivalence, this substitution can be per-
formed without any loss greater than the toler-
ance τ(Λ) for the parameter λ representing the
characteristic property of the filter.
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Table 1: Summary of Filter Designs with Sets of Most Disjoint Roots zj = rje
iθj

Name → A(z) → S(z)
DCOMD {(zj , z

−1
j ) : (rj < 1) ∧ (θj ≥ 0)} {(zj , z

−1
j ) : (rj > 1) ∧ (θj ≤ 0)}

DROMD {(zj , z̄j) : rj < 1} {(zj , z̄j) : rj > 1}
DRBMD {(zj , z̄j , z

−1
j , z̄−1

j , ) : θj < θ∗} {(zj , z̄j , z
−1
j , z̄−1

j , ) : θj > θ∗}
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Disjoint Sets of Daubechies Polynomial Roots
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Figure 1: Disjoint sets of Daubechies polynomial roots.

Scalets for Disjoint Root Set Examples
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Figure 2: Scalets for disjoint root set examples.
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Wavelets for Disjoint Root Set Examples
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Figure 3: Wavelets for disjoint root set examples.

Analysis−Synthesis Comparisons for Biorthogonal Examples
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Figure 4: Analysis and synthesis scalets and wavelets for biorthogonal examples.
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Figure 5: Time-domain regularity for orthogonal filters.
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Figure 6: Time-domain regularity for biorthogonal filters.
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Figure 7: Time-frequency uncertainty for orthogonal filters.
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Figure 8: Phase nonlinearity for orthogonal filters.
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Figure 9: Time-frequency uncertainty for biorthogonal filters.
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Figure 10: Frequency-domain selectivity for biorthogonal filters.


