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Abstract

A unifying algorithm has been developed to systematize the collection of com-
pact Daubechies wavelets computable by spectral factorization of a symmetric positive
polynomial. This collection comprises all classes of real and complex orthogonal and
biorthogonal wavelet filters with maximal flatness for their minimal length. The main
algorithm incorporates spectral factorization of the Daubechies product filter into anal-
ysis and synthesis filters. The spectral factors are found for search-optimized families
by examining a desired criterion over combinatorial subsets of roots indexed by bi-
nary codes, and for constraint-selected families by imposing sufficient constraints on
the roots without any optimizing search for an extremal property. Daubechies wavelet
filter families have been systematized to include those constraint-selected by the princi-
ple of separably disjoint roots, and those search-optimized for time-domain regularity,
frequency-domain selectivity, time-frequency uncertainty, and phase nonlinearity. The
latter criterion permits construction of the least and most asymmetric and least and
most symmetric real and complex orthogonal filters. Biorthogonal symmetric spline
and balanced-length filters with linear phase are also computable by these methods.
This systematized collection has been developed in the context of a general framework
enabling evaluation of the equivalence of constraint-selected and search-optimized fam-
ilies with respect to the filter coefficients and roots and their characteristics. Some of
the constraint-selected families have been demonstrated to be equivalent to some of
the search-optimized families, thereby obviating the necessity for any search in their
computation.

1 Introduction

Since the discovery of compact orthogonal and biorthogonal wavelets by Daubechies, various
discussions of the general theory and specific parameterizations of her wavelets have also been
published (cf. [2, 5, 12, 16] for literature reviews). These compact Daubechies wavelets,
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which have the maximal number of vanishing moments for their minimal length, can be
implemented as discrete filters that are iterated or auto-convolved to generate approximations
of the continuous functions.

The Daubechies wavelet filters can be readily computed via spectral factorization of a
symmetric positive polynomial [1]. Significant advantages of the spectral factorization ap-
proach include its generalizability to many different classes and families of wavelets, its
suitability for easily interpretable visual displays, and thus its practicality in pedagogy. All
of the complex orthogonal, real orthogonal, and real biorthogonal families of the Daubechies
class computable by spectral factorization and constructed with a single unifying computa-
tional algorithm have been studied experimentally in the systematized collection developed
by Taswell [10, 11, 12, 15, 16, 17] over a wide range of vanishing moment numbers and filter
lengths.

In contrast, angular parameterization methods have usually been demonstrated for wavelets
with only one vanishing moment (i.e., less than maximal flatness) and very short lengths [9]
with the exception of [13]. But the latter only verified orthogonality and vanishing moment
numbers for the filters and did not attempt any search through the angular parametrization
space for filters with desirable properties.

These comments highlight one of the essential questions in the development of an algo-
rithm for the design of wavelet filters: How much computational effort should be expended
in the construction of a wavelet filter possessing which properties over which range of filter
lengths? A basic assumption inherent in the systematized collection of Daubechies wavelets
[11, 15, 17] hypothesizes that the spectral factorization approach affords the most economi-
cal generation of wavelet filters with the best variety and combination of properties over the
widest range of filter lengths.

The economy of the spectral factorization method in comparison with the angular pa-
rameterization method is achieved by the reduced size of the search space for the filter root
codes [16] relative to that for the filter coefficient angles [9]. In [16], conjectures were made
regarding schemes to enhance the efficiency of the combinatorial search used in the design
algorithm. In [17], a new design principle was introduced within a general framework to
demonstrate that the search can be completely eliminated for those search-optimized filter
families for which equivalence has been demonstrated with constraint-selected filter families.
This survey reviews the development of the systematized collection of Daubechies wavelets
and summarizes the essential computational methods.

2 General Framework

Consider a filter expressed as the complex z-domain polynomial F(z) with corresponding
vectors for the roots z = [z;] € Z and the coefficients f = [f,] € F. Associated with F'(z),
assume there exist three parameters, vectors v € I', £ € =, and scalar A € A, respectively,
that index the filter within a set of such filters forming a defined family, specify each indexed
filter of the family within a search space, and characterize its properties.

Applying this notation to the orthonormal Daubechies [1] and Rioul [7] wavelets, v =
[v1,72] = [N, K] represents the number K of vanishing moments for wavelet filters of length
N = 2K and N > 2K, respectively. For angle space methods [9] to generate orthonormal



wavelets, & represents the set of angles that specifies f for F'(z). For binomial space methods
[16] to generate Daubechies wavelets, & represents the set of binary codes that specifies z
for F'(z). In both cases, A represents a criterion obtained from an individual property or
a weighted combination of properties computed from z and/or f (such as the filter’s time-
domain regularity [14], phase nonlinearity [16], et c.) that characterizes F'(z).

Thus, v and & determine F'(z) and then F'(z) determines A with the mapping of spaces
['x 2 F x Z+ A. The parameters v and € that determine F(z) are called the indezing
parameter and specification parameter, respectively. The parameter A that is determined by
F(z) is called the characterization parameter. If X represents an individual property (rather

than weighted combination of properties), then A is also termed a characteristic property of
F(z).

2.1 Existence and Uniqueness

Given a defined filter family {F,(z)} indexed by =, assume for fixed ~ that a finite sequence
of filters F, ;(z) indexed by ¢ can be generated by and evaluated for corresponding sequences,
respectively, of specification parameters &, and characterization parameters \;. If = is an
unbounded or continuous space, then it can be appropriately bounded and discretized to
permit a countably finite sequence §;.

Assuming restriction to a countably finite space =, then the corresponding spaces F x Z
and A are also countably finite. Further assuming a one-to-one invertible mapping and
uniqueness of the elements \; € A (achieved if necessary by the use of “tie-breaker” rules
for the definition of the characterization parameter \), then finite countability of unique
elements for an invertible mapping implies that it is feasible to search for both elements
A = min; \; and X\ = max; \; in the range and select the corresponding filters F, ;(z) in the
domain.

2.2 Definitions and Inferences

A filter F'(z) is called extremal if it can be shown to possess a characterization parameter
attaining an extreme manifested by either A or X. A filter F(z) is called search optimized if
it is generated by an algorithm that optimizes A € A with an exhaustive search to ensure
identification of either A or . A filter F'(2) is called constraint selected if it is generated by
an algorithm that specifies sufficient constraints on &, f, or z to ensure uniqueness of F'(z)
and selection of F'(z) without a search. An indexed set of filters {F, ()} = {F(z;y) : v €T}
is called a family if all members of the set are generated by the same algorithm, a function
9(&;7), g(f;7), or g(z;7), subject to the control of the indexing parameter ~.

Two different filter families {F,(z)} and {F?(2)} generated by two different algorithms
g(+;) and ¢'(-; ) are F-equivalent, or equivalent with respect to (w.r.t.) the filter coefficient
space F, if ||f, —f! || < 7 for all v € " with given error tolerance 7(F). Analogously, {F(z)}
and {F}(2)} are Z-equivalent, or equivalent w.r.t. the filter root space Z, if ||z, — z|| < 7
for all 4 € T" with given error tolerance 7(Z). Finally, they are A-equivalent, or equivalent
w.r.t. the characterization parameter space A, if [\, — A| < 7 for all v € T with given error
tolerance 7(A).



A search-optimized filter is necessarily an extremal filter, whereas a constraint-selected
filter may or may not be an extremal filter. If a constraint-selected filter can be shown
to be equivalent to a search-optimized filter, then the constraint-selected filter is also an
extremal filter. Both F-equivalence and Z-equivalence of two different filter families imply
A-equivalence, but the converse is not true.

3 Daubechies Polynomials

The generation of Daubechies wavelet filter families computable by spectral factorization of
the Daubechies polynomials requires a separate algorithm for computing the roots of the
product filter

Pp(z) = (2 + 1)*P*Qp(2) (1)
or its related form the quotient filter
Qp(2) = (2 + 1) PPy (2) (2)

which is a Laurent polynomial of degree dy = D with 2D roots. Both forms are indexed by
the integer parameter D > 0.

Consider mappings x — y — 2z between three planes in the complex variables x, y, and
z. Use the = plane to find the roots of the conditioned polynomial Cp(z), map to the y
plane for the roots of the binomial polymial Bp(y), and map again to the z plane for the
roots of the quotient polynomial Qp(z). All three polynomials Cp(z), Bp(y), and Qp(z)
are considered related forms of Pp(z) called the conditioned, binomial, and quotient forms,
respectively.

The quotient form Qp(z) derives simply from division of the product form Pp(z) by all
of its roots at z = —1. The binomial form ([2, Eq. 6.1.12], [8, Eq. 1], [3, Eq. 1.7])

Bp(y) = XD: (D ;r Z) y' (3)

=0

derives from the binomial series for (1 — y)~(P+Y truncated at D + 1 terms. These forms
can be related through conformal mappings (see below).

To improve the numerical conditioning of the root finding problem for the roots y; of
Bp(y), Shen and Strang [8] recommended the change of variables x = ky with x = 4, while
Goodman et al. [3] recommended the change of variables z = 1/y. Incorporating both
transformations with = = 1/(ky), then

5w = 3 (7 )y



yields the conditioned form

Co(x) = i i (D N Z) P (@)

Now obtain the D roots x; of Cp(z) by computing the eigenvalues of the companion matrix.

Then the D roots y; of the binomial form Bp(y) can be calculated simply as y; = 1/(kz;).
With another change of variables z + 27! = 2 — 4y as described by Daubechies [1, 2], map

the binomial form Bp(y), a regular polynomial with D roots, to the quotient form Qp(z), a

Laurent polynomial with 2D roots. Given the Joukowski transformations [4, vol 1, pg 197,
223]

w = f(z)=(2+27")/2 ()
z = fHw)=wtvVur-1 (6)

and the affine transformations

y = glw)=01-w)/2 (7)
w = g '(y)=1-2y, (8)

then the composite mappings® yield the explicit solutions

y = g9(f(2) =1 —(z421/2)/2 (9)
= ') =1-2y£ /(1 -2y — 1. (10)

The latter equation yields a doubly-valued solution with the reciprocal pair {z,27'}. When
the pairs are regrouped as complex quadruplets {z,271, z, 271} and factors U(z; z;) = (2 —
z)(z— 2z 1) (2= %,) (2 — 7 ') with any real duplets {r,7'} and factors V(z;7;) = (2 — i) (z—
Tj_l), the Daubechies product polynomial Pp(z) expressed in regular form can be factored
as

ncd nrd

Pp(z) = (z+ 1P [z 2) [ [ V(ziry) (11)

i=1 j=1

where n® = | D/2| and n* = D mod 2. For further details on the numerical performance
of these methods, refer to [12, 16].

4 Spectral Factorization Rules
For an arbitrary polynomial F(z) with length N coefficients, there are N — 1 roots of which

0 < K <N —1may be at z = —1. When considering spectral factorization, the product
filter polynomial Pp(z) with N, = 4D + 3 coefficients and K,, = 2D + 2 roots at z = —1

!Unlike other sections where f and g may denote filters or arbitrary functions, here f and g denote
functions that are conformal maps in the complex domain.



is factored into the analysis and synthesis filter polynomials A(z) and S(z) with N, and
Ny coefficients, and K, and K roots at z = —1, respectively. This factorization yields the
constraints

N, = N.+N,—1 (12)
K, = K,+K, (13)

on the lengths of the three filters and their roots at z = —1. Each family of filters described
in subsequent sections has been named with an identifying acronym followed by (N; K) in
the orthogonal cases for which

N = N,=N, (14)
K = K,=K, (15)

is required, and by (IV,, Ng; K., K;) in the biorthogonal cases for which

N, = K,+4n42n™ 41 (16)
N, = Ki+4n9+2n +1 (17)
N, = 2K, -1 (18)

is required. Here n¢9, ncd, n'd, and n’d are the numbers of complex quadruplet factors U(z; z;)
and real duplet factors V(z;r;) for each of A(z) and S(z). Both n°® and n"® may be whole
or half integer. In the latter case, half of a complex quadruplet and half of a complex duplet
denote, respectively, a complex duplet and a real singlet.

For K, and K necessarily both odd or both even, then K, is always even and K = K,/2
a whole integer determines n¢ = ngi+ng and ni! = ni'+nl? according to n? = [ (K —1)/2]
and ngd = (K — 1) mod 2. If K, and K; are given, then K, and K yield ng! and n%d split
into {n¢, ni} and {n< n4} and the roots are factored accordingly. For real coefficients,
a root z must be paired with its conjugate zZ. For symmetric coefficients, a root z must be
paired with its reciprocal z~!. For 2-shift orthogonal coefficients, a root z must be separated
from its conjugate reciprocal z71.

Thus, in the real biorthogonal symmetric case, each complex quadruplet U(z; z;) and
real duplet V(z;7;) must be assigned in its entirety to either A(z) or S(z). In the real
orthogonal case, each complex quadruplet is split into two conjugate duplets (z — z;)(z — Z;)
and (z—z; ')(z— % '), while each real duplet is split into two singlets (z—r;) and (z—r; ),
with one factor assigned to A(z) and the other to S(z). The complex orthogonal case is
analogous to the real orthogonal case except that the complex quadruplets are split into
reciprocal duplets (z — z;)(z — z; ) and (2 — 2;)(z — 2, ') instead of conjugate duplets. The
complex orthogonal symmetric case requires use of complex quadruplets without real duplets.

All orthogonal cases require K = K, = K, = K,/2, n{% = n{® = nf1/2, and n}! =
nd = ni/2 with N = N, = N, = 2K. Note that n)! can only equal 0 or 1. Therefore,
in biorthogonal cases, either {n! = 0, n' = 1} or {nX4 = 1, n¥ = 0}. However, in
orthogonal cases, either {n!4 = n! = 0} or {n™¢ = n™¢ = 1/2} with 1/2 of a duplet
denoting a singlet. For all real orthogonal cases as well as those complex orthogonal cases
not involving symmetry criteria, K can be any positive integer. For the complex orthogonal



least-asymmetric and most-asymmetric cases, K must be a positive even integer. For the
complex orthogonal least-symmetric and most-symmetric cases, K must be a positive odd
integer.

For the real biorthogonal symmetric cases, K, and Kg must be both odd or both even.
In the biorthogonal symmetric spline case, all additional roots (other than those at z = —1
with assignment determined by K, and Kj) are assigned to the analysis filter leaving the
synthesis filter as the spline filter. All other biorthogonal symmetric cases incorporate a
root assignment constraint that balances the lengths of the analysis and synthesis filters
such that N, =~ N; as much as possible. For K, = 2i — 1 and K, = 25 — 1 both odd
with 4,5 € {1,2,3,...}, balancing of equal filter lengths is possible. In fact, requiring both
K, = K, and N, = Ny is also possible when N = N, = N, = 2K with K = K, = K
for {K =144k | k=1,2,3...}. However, for K, = 2i and Ky = 2j both even, equal
balancing of filter lengths N, and Ny is not possible. The additional unbalanced roots are
assigned to the analysis filter such that N, > Nj leaving the synthesis filter as the shorter
filter.

5 Daubechies Wavelet Filter Families

All filter families surveyed here are named, defined, and generated according to the conven-
tions, notation, and methods established in [15, 16] for the systematized collection of wavelet
filters computable by spectral factorization of the Daubechies polynomial. However, one of
the original families, named DROLD in [15], was renamed DROMD in [17] in order to achieve
consistency with the more recent collection of families introduced in [17]. All of the acronyms
used for the filter family names abbreviate ‘D’ for Daubechies as the first character, ‘C’ or
‘R’ for complex or real as the second character, ‘O’ or ‘B’ for orthogonal or biorthogonal as
the third character, and then two additional characters denoting an additonal description to
distinguish each family from the others.

5.1 Constraint-Selected Families

In addition to the spectral factorization rules (Section 4) imposing the necessary contraints
for complex orthogonality, real orthogonality, and real biorthogonality, the least and most
disjoint families are defined according to constraints derived from the principle of separably
disjoint root sets in the complex z-domain. Consider only the roots of the quotient polyno-
mial Q(z) (Equation 2) and split this set of roots into two sets of roots {zi} and {z}} for
the analysis and synthesis filters A(z) and S(z).

These root sets from Q(z) must be disjoint with

0= {ztyn {1} (19)

(because common roots at z = —1 for both A(z) and S(z) from P(z) have been excluded
from consideration). Now let {C?'} and {C5} denote finite collections of open convex regions
with the largest area domains that do not intersect yet still cover the sets {zi} and {z}},



respectively. More precisely,

Uzt C U (20)
Uz C U (21)
0 = nCt (22)
0 = nC; (23)
0 = (UCHN(UC). (24)

Finally, let C' denote the cardinality of the set
{Ctii=1,...,;C:j=1,...,J} (25)

as measured by the number C' = I + J of regions covering all the roots of Q(z). Then root
sets {22} and {z}} are called least and most disjoint if C' is, respectively, the maximum or
minimum possible subject to the constraints of the spectral factorization rules imposed.

Table 1: Filter Designs for Some Constraint-Selected Families with Roots z; = rjeief

Acronym Q(z) = A(z) Q(z) = S(z)
DCOMD | {(z;,2 ") : (r; <) A(0; > 0)} {(z;,2,"): (r; > 1) A (0, <0)}
DROMD {(z;,2;) iy <1} {(z5,2;) iy > 1}
DRBMD | {(z;,%,2;",% ") : 91]. < 0%} {(z;.2;,2, 1. 2;") 1 0, > 0}
DRBSS {(z;2,2,1 %)}

Table 1 summarizes the spectral factorizations for the DCOMD, DROMD, and DRBMD
filter families designed with most disjoint (MD) root sets. The factorizations for the DCOLD,
DROLD, and DRBLD filters designed with least disjoint (LD) root sets cannot be summa-
rized as concisely. However, the corresponding algorithms order the roots by angle and
impose the maximum number of alternations for the assignments in the split to A(z) and
S(z). The algorithm for DRBLD was also modified to devise another family called DRBRD
with regular disjoint (RD) root sets. For comparison, Table 1 also includes the spectral
factorization for the DRBSS family with symmetric spline (SS) root sets.

5.2 Search-Optimized Families

Numerical estimates of defined filter characterization parameters \ are used as selection
criteria for all other families subjected to optimization in combinatorial searches of the
root sets. These criteria [14] include the phase nonlinearity pnl(A), time-domain regularity
tdr(A), frequency-domain selectivity fds(A), and time-frequency uncertainty tfu(.A). Most
of the orthogonal families are defined by pnl(.A) selecting for varying degrees of asymmetry
or symmetry. Work reported in [11, 12, 15] was later revised in [16] by the shift of the
integration interval for pnl(A) from [0, 27] to [—m, 7] and by the use of pnl(.A) as a “tie-
breaker” criterion for families selected by the other criteria. These revisions now insure



unique criterion values for each root set examined in the combinatorial search (which can be
performed ignoring binary complements for orthogonal families).

Minimizing or maximizing pnl(A) for real filters defines DROLA and DROMA, respec-
tively, the least asymmetric (LA) and most asymmetric (MA) families. If the parity of K
is ignored, then minimizing or maximizing pnl(.A) for complex filters defines DCOLN and
DCOMN, respectively, the least nonlinear (LN) and most nonlinear (MN) families. Phase
nonlinearity does not exist and cannot be used for the real biorthogonal families all of which
are symmetric. Therefore, one of the other characterization parameters must be used as an
optimization criterion. Also, these biorthogonal families are subjected to the length con-
straints determined by the principle of maximally balancing the filter lengths for both A(z)
and S(z).

For all but several of the search-optimized families, the selection criterion is optimized
for A(z). The exceptions are the DRBBR, DRBBS, and DRBBU families with balanced
regular (BR), balanced selective (BS), and balanced uncertain (BU) root sets. Instead, the
selection criterion is optimized for both A(z) and S(z) by maximizing a balancing measure
B defined as

BO(), A, 8) = )A (26)

where A(+) is either tdr(-), fds(-), or tfu(-), respectively, for DRBBR, DRBBS, and DRBBU.

Table 2 summarizes filter designs for some of the search-optimized families. The index
constraints tabulated are those required to generate the defined family. However, for purposes
of comparison between families in tables and figures, the definitions for all orthogonal families
have been extended to begin at K = 1. For example, DCOLN(6;3) is complex as expected,
but DCOLN(4;2) and DCOLN(2;1) are real. Also, note that the DCOLN family is the union
of the even-indexed DCOLA and odd-indexed DCOMS families, while the DCOMN family is
the union of the even-indexed DCOMA and odd-indexed DCOLS families. Complete details
for the algorithms to compute each of the various selection criteria can be found elsewhere
(12, 14].

6 Unifying Algorithm

All filter families of the systematized collection of Daubechies wavelet filters [12, 16] are gen-
erated by the spectral factorization and selection of root sets (with either the predetermined
constraints or the optimizing combinatorial search) incorporated in the following algorithm:

1. Input the identifying name FiltName for the family of filters and the indexing design
parameters K, and K.

2. Compute the numbers K, = K, + K, D = K,/2 — 1, n{* = |D/2], and n}! = D
mod 2.

rd

o sets of real duplet roots

3. Compute the n? sets of complex quadruplet roots and the n
of the quotient filter Qp(2).



Table 2: Filter Designs for Some Search-Optimized Families

Real Biorthogonal Description Index Constraint Optimization
DRBLU Least Uncertain  even (K, + Kj) min tfu(A)
DRBMS Most Selective even (K, + K max fds(A)
DRBMR Most Regular even (K, + K max tdr(A)
DRBBR Balanced Regular  even (K, + K5) max B(tdr(),A,S)

Real Orthogonal Description Constraint Optimization
DROLU Least Uncertain K>1 min tfu(.A)
DROMR Most Regular K>1 max tdr(.A4)
DROLA Least Asymmetric K>1 min pnl(A)
DROMA Most Asymmetric K>1 max pnl(.A)

Complex Orthogonal Description Constraint Optimization
DCOLU Least Uncertain K>3 min tfu(.A)
DCOMR Most Regular K>3 max tdr(.A)
DCOLS Least Symmetric odd K >3 max pnl(.A)
DCOMS Most Symmetric odd K >3 min pnl(.A)
DCOLA Least Asymmetric even K >4 min pnl(.A)
DCOMA Most Asymmetric even K >4 max pnl(.A)
DCOLN Least Nonlinear K>3 min pnl(.A)
DCOMN Most Nonlinear K>3 max pnl(.A)

. Access the factorization and selection rules that define the family of filters named
FiltName.

. Apply the rules to {n<, n'} for the FiltName filter pair indexed by {K,, K} and

p'tp
compute the splitting number pairs {n<, n%} and {n', n}.

. If FiltName is a constraint-selected family, apply the rules to select the 4ntd + 2nkd
roots for A(z) and the 4n% + 2n™ roots for S(z) and jump to Step 11.

. Sort the roots in an order convenient for the class of splitting appropriate to the
type of filter. All roots of a complex quadruplet should be adjacent with duplets
of the quadruplet subsorted according to conjugates or reciprocals depending on the
filter type. Assign binary coded labels 0 and 1 to the first and second duplet of each
quadruplet. Analogously, assign binary codes to the first and second singlet of the real
reciprocal duplet if present. If biorthogonal, assign binary coded labels 0 or 1 to each
of the entire quadruplets and duplets.

. Generate the possible binomial subsets for these binary codes [6] subject to the imposed
factorization rules and splitting numbers. For orthogonal filters, there are a total of
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ncd + n' binary selections without constraint on the bit sum, and thus gnatnyl-1
binomial subsets ignoring complements. For biorthogonal filters, there are a total of
ny! binary selections with bit sum constrained to ngl, and thus (Zé:) binomial subsets.

9. For each root subset selected by the binomial subset codes, characterize the correspond-
ing filter by the optimization criterion appropriate for the FiltName family. These opti-
mization criteria may be any of the numerically estimated characterization parameters
A computed from the roots z or the coefficients f.

10. Search all root subsets to find the one with the optimal value of the desired criterion.
If necessary, apply the “tie-breaker” criterion.

11. Include the K, + K, required roots at z = —1 with K, for the optimal subset of
roots intended for the analysis factor A(z) and with K for the complementary subset
intended for the synthesis factor S(z) and compute the filter coefficients.

12. If FiltName is an orthogonal search-optimized family, compare the selected (primary)
subset of filter roots and coefficients with its complementary subset to choose the one
with minimax group delay over the interval w € [0,7] as the subset for A(z). If
FiltName is a biorthogonal search-optimized family, compare the primary and comple-
mentary subsets only if K, = K, n4 = n%, and n!4 = 0 = n? in order to choose the
one with the defining criterion optimized for A(z).

13. Output roots z and coefficients f for each of A(z) and S(z).

For search-optimized families, full searches of all possible combinatorial subsets should be
performed for a sufficient number of values of K indexing the filter family’s members in
order to infer the appropriate pattern of binary codes with bit sums characterizing the family.
Using such a pattern permits successful partial rather than full combinatorial searches. These
partial searches provide significant reduction in computational complexity convenient for
larger values of K, for example, for searches with K > 30 computed on desktop workstations
current in 1999.

7 Examples and Comparisons

Figure 1 displays spectral factorizations for each of the least and most disjoint filter families
at K, = Ky = 16 for D = 15. Roots for A(z) and S(z) are marked with “0” and “x”,
respectively. As an example of the principle of minimizing and maximizing the cardinality
C, observe that C' = 3 for DRBMD and C' = 13 for DRBLD. Note that C' # 2 for DRBMD
because convexity is required for each of the non-intersecting covering regions, and C' # 26
for DRBLD because the largest area possible is required for each of the regions. Figure 2
displays the wavelets corresponding to A(z) for the six examples in Figure 1. Both the
real parts (solid lines) and imaginary parts (dotted lines) are shown for complex scalets and
wavelets.

All filters of all families were demonstrated to meet or surpass requirements for orthog-
onality, biorthogonality, and reconstruction when tested [14] in 2-band wavelet filter banks.
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In general, reconstruction errors ranged from “perfect” at O(107!%) to “near-perfect” at
O(107®) as K ranged from K = 1 to K = 24 for both orthogonal and biorthogonal classes.
All search-optimized filter families were observed to have the optimal values of their defining
selection criterion when compared to the other families.

Figures 3-6 display values of various characteristic properties for the filter families. The
families are listed in the legends sorted in order of the properties’ median values for A(z)
over the range of the indexing parameter. These figures and the corresponding numerical
values in tables can be examined to assess A-equivalence. Refer to [12, 16] for a complete
catalogue of all results for all of the filter families with both numerical tables of parameter
estimates and graphical displays of the filters in the time, frequency, and z domains.

Although named distinctly because of their different computational algorithms, there
are several pairs of filter families which should ideally be F-, Z- and A-equivalent. These
pairs provide a test for verifying computational methods. The DROMD and DROMA fam-
ilies should be equivalent real families, while the DCOMD and DCOMN families should be
equivalent complex families. Numerical experiments have confirmed these expected results.
All constraint-selected families have been compared with the search-optimized families for
K,=K;=1,...,24. Each member of the following sets of filter families have been demon-
strated to be F-equivalent to the other members of the set with 7(F) at machine precision:
{DRBMD, DRBMU, DRBLS, DRBLR}, {DRBRD, DRBMR}, {DROMD, DROMA}, and
{DCOMD, DCOMN}.

Figures 3 and 4 present visually dramatic contrasting examples of the presence and
absence of A-equivalence, respectively, for the orthogonal and biorthogonal families with
regard to the property of time-domain regularity. Examination of these figures reveals that
of those displayed, all of the orthogonal families, but none of the biorthogonal families, are
A-equivalent with 7(A) < 0.2 for time-domain regularity. Figures 5 and 6 demonstrate
that {DROLD, DROLU} and {DROLD, DROLA} are each A-equivalent pairs of orthogonal
families, respectively, with regard to time-frequency uncertainty and phase nonlinearity.
Analogous results for biorthogonal families have shown that {DRBMR, DRBLU} is a A-
equivalent pair with regard to time-frequency uncertainty for A(z), but there is no such pair
with regard to frequency-domain selectivity. Note that since the pair {DRBRD, DRBMR} is
F-equivalent, then the pair {DRBRD, DRBMR} is A-equivalent with regard to time-domain
regularity and the pair {DRBRD, DRBLU} is A-equivalent with regard to time-frequency
uncertainty.

8 Discussion

An algorithm has been developed to unify all of the diverse families of real and complex
orthogonal and biorthogonal Daubechies wavelets. This automated algorithm is valid for
any order K of wavelet and insures that the same consistent choice of roots is always made
in the computation of the filter coefficients. It is also sufficiently flexible and extensible that
it can be generalized to select roots for filters designed by criteria other than those that
already comprise the systematized collection of Daubechies wavelets [11, 15, 17].
Systematizing a collection of filters with a mechanism both for generating and evaluating
the filters enables the development of filter catalogues with tables of numerical parameter es-
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timates characterizing their properties. Providing estimates for a variety of characteristics in
both time and frequency domains, rather than just the optimized characteristic, constitutes
an important aspect of these tables which enhances their utility. Use of these catalogues as
a resource enables the investigator to choose an available filter with the desirable character-
istics most appropriate to his research problem or development application.

The systematized collection of Daubechies wavelets has been developed within the context
of a general filter design framework consisting of indexing parameters v € I, specification
parameters € € =, filter coefficients f € F, filter roots z € Z, characterization parameters
A € A, their corresponding spaces, and the mappings between the spaces. Within this
framework, definitions have been introduced for filter families that are either search optimized
or constraint selected, for the equivalence of families, and for new design principles based on
disjoint root sets and filter characteristic properties.

Several pairs of both F-equivalence and A-equivalence have been demonstrated for both
orthogonal and biorthogonal classes of filter families. If A-equivalence exists between a
constraint-selected family and a search-optimized family with respect to a particular charac-
terization parameter A as an extremal property, then the constraint-selected family can be
used to replace the search-optimized family, and thus to obviate the necessity for a search in
the computational algorithm. As an important example, the DROLD (least disjoint) family
can be used as an effective substitute for the DROLA (least asymmetric) family.

The A-equivalent substitution of a constraint-selected family for a search-optimized fam-
ily enables fast computation of those constraint-selected family members for which the cor-
responding search-optimized family members would require excessively slow computation.
Because of the A-equivalence, this substitution can be performed without any loss greater
than the tolerance 7(A) for the parameter A representing the characteristic property of the
filter. Sufficiently fast computation of filters within required error tolerances becomes criti-
cally important for real-time or on-line adaptive applications.

The spectral factorization approach advocated here for the systematized collection of
Daubechies wavelets has been criticized [18, 9] for the numerical instabilities associated
with finding the roots of a symmetric positive polynomial at high orders. However, the
angular parameterization methods, albeit avoiding the root-finding problem, do not guar-
antee that filters generated by lattices will have other desireable characteristics such as
maximal frequency-domain selectivity or minimal time-frequency uncertainty. Although the
parameter-space constraint on the angles for K = 1 vanishing moment on the wavelet [9]
may insure some time-domain regularity and other desireable characteristics with relevance
to low order filters with small N, it does not necessarily for high order filters with large
N. Searching a parameter space for the corresponding large K becomes increasingly com-
putationally expensive. Thus, finding a filter with desireable characteristics becomes more
difficult because of the unrestricted search space. Although the angular parameterization of
Zou and Tewfik [18] does impose constraints for more than one vanishing moment, they did
not present any filter examples for K > 2.

In contrast, Daubechies wavelets with a wide variety and combination of desireable fil-
ter characteristics can be readily computed via spectral factorization as demonstrated in
the systematized collection developed in [11, 15, 17] and reviewed here. Thus, despite the
criticism of other authors [18, 9] regarding the numerical instabilities inherent in spectral
factorization, so far the method remains more useful in generating higher order wavelets with
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more than one vanishing moment. Clearly, each of the different approaches has advantages
and disadvantages. Therefore, the most prudent and practical position to adopt would be
that of verifying for each algorithm its utility in terms of the class of filters and range of
filter lengths N for which the algorithm is valid, the possible combinations of desired filter
characteristics for which a search can be done, and the computational complexity of the
search for filters with those characteristics. As reviewed here, this task has been completed
for the Daubechies wavelets computed via spectral factorization.
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Disjoint Sets of Daubechies Polynomial Roots

DROMD

Figure 1: Examples of disjoint sets of Daubechies polynomial roots.

Wavelets for Disjoint Root Set Examples

DROMD

Figure 2: Analysis wavelets for disjoint root set examples.
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Orthogonal Filters Time—Domain Regularity

DCOMR 3.991
DROMR 3.984
DCOMD 3.967
DROLU 3.963
DCOLD 3.962
DCOLU 3.955
DCOLN 3.954
DROMD 3.953
DROLD 3.950
DROLA 3.949

Figure 3: Time-domain regularity for orthogonal filters.

Biorthogonal Filters Time—Domain Regularity

DRBMR A 4.52
DRBMR S 2.75
DRBLU A 4.39
DRBLU S 2.98
DRBMS A 3.52
DRBMS S 4.63
DRBLD A 2.94
DRBLD S 4.83
DRBMD A 0.03
DRBMD S 7.46

Figure 4: Time-domain regularity for biorthogonal filters.
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DCOMD 3.04
DCOMR 1.59
DROMD 1.49
DCOLD 1.00
DROMR 0.97
DCOLN 0.89
DCOLU 0.86
DROLA 0.85
DROLD 0.85
DROLU 0.81

Figure 5:

DCOMD 24.26
DROMD 15.11
DCOMR 10.83
DCOLD 4.42
DROMR 4.24
DROLU 2.21
DCOLU 1.47
DCOLN 1.35
DROLD 1.06
DROLA 0.86

Orthogonal Filters Time—Frequency Uncertainty

Time-frequency uncertainty for orthogonal filters.

Orthogonal Filters Phase NonLinearity

Figure 6: Phase nonlinearity for orthogonal filters.
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DRBMD A 2.42
DRBMD S 0.52
DRBLD A 0.96
DRBLD S 0.60
DRBMS A 0.86
DRBMS S 0.82
DRBMR A 0.61
DRBMR S 1.62
DRBLU A 0.59
DRBLU S 1.42

Biorthogonal Filters Time—Frequency Uncertainty

DRBMS A 0.78
DRBMS S 0.82
DRBLU A 0.51
DRBLU S 0.20
DRBLD A 0.49
DRBLD S 0.69
DRBMR A 0.43
DRBMR S -0.27
DRBMD A -4.37
DRBMD S 0.38

Figure 8: Frequency-domain selectivity for biorthogonal filters.
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