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Abstract

Previous simulation experiments for
the comparison of wavelet shrinkage de-
noising methods have failed to demon-
strate significant differences between
methods. Such differences have never
been clearly demonstrated due to the use
of qualitative comparisons or of quanti-
tative comparisons that suffered from in-
sufficient sample size and/or absent con-
fidence intervals for the figure of merit
investigated.

In particular, previous studies have
used non-robust measures as figures of
merit for fixed signal classes defined by
adding instances of noise to the same in-
stance of the fixed test signal. New simu-
lation experiments are reported here that
instead use robust measures for random-
ized signal classes defined by adding in-
stances of noise to different instances of
randomized test signals.

Significantly greater variability in the
performance of the denoising methods
was observed when comparing results ob-
tained with randomized rather than fixed
signal classes. However, the use of ro-
bust measures does facilitate statistically
valid comparisons with respect to this
variability. Indeed, the use of non-robust
or of non-randomized signal classes can
result in misleading inferences from in-
valid comparisons. Thus, the combined
use of both should yield more realistic and
meaningful simulation results that better

represent the real-world context intended
for applied use of the denoising methods.
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1 Introduction

Denoising should not be confused with
smoothing. Whereas smoothing removes high fre-
quencies and retains low frequencies, denoising
attempts to remove whatever noise is present and
retain whatever signal is present regardless of the
spectral content of the noisy signal. For example,
to denoise music corrupted by noise, the high fre-
quencies of the music should not be eliminated.
Instead, both the treble and the bass should be
preserved. Although not demonstrated here, this
example of denoising music offers an important
application of wavelet shrinkage denoising for fur-
ther investigation.

As developed originally by Donoho et al.
[4, 5, 3, 6], wavelet shrinkage denoising is de-
noising by shrinking (i.e., nonlinear soft thresh-
olding) coefficients in the wavelet transform do-
main. It consists of three steps: 1) a linear for-
ward wavelet transform, 2) a nonlinear shrinkage
denoising, and 3) a linear inverse wavelet trans-
form. Because of the nonlinear shrinking of co-
efficients in the transform domain, this procedure
is distinct from those denoising methods that are
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entirely linear. Moreover, it is considered a non-
parametric method. Thus, it is distinct from para-
metric methods [10], including both linear and
nonlinear regression [7], in which parameters must
be estimated for a particular model that must be as-
sumed a priori. (For example, the most commonly
used parametric method is least squares regression
to estimate the parameters a and b in the model
y = ax + b.)

The first Monte Carlo simulation experiment
comparing any of the various wavelet shrinkage
denoising procedures was performed by Taswell
and published in the article by Donoho and John-
stone [4, Table 4, page 448; Acknowledgements,
page 450]. Various other experiments have since
been performed by other authors (see discussion
and references in [6], also [8, 2]). Most of this work
has examined a few well known images (‘Barbara’,
‘Lena’,’baboon’, et c.) or the four test signals orig-
inally called ‘Doppler’, ‘HeaviSine’, ‘Blocks’, and
‘Bumps’ by Donoho and Johnstone [4]. The lat-
ter was renamed more descriptively as ‘Spires’ by
Taswell [15]. All of the experiments on these test
signals, including the most recent experiments on
signals [15, 8] and on images [2], examined only
fixed test signals and images rather than defined
classes of randomized test signals and images (or
alternatively, classes of real-world signals and im-
ages with many different instances in each class).

To address this deficiency in the design of the
simulation experiments, new classes of random-
ized test signals are introduced here, and used in
new experiments which provide a more appropri-
ate evaluation of the performance of the denois-
ing methods. For example, instead of using just
one instance of ‘Spires’ with the particular values
of the peak height, width, and location parame-
ters originally defined in [4], multiple instances of
‘Random Spires’ are used in the experiments with
randomized values of the peak height, width, and
location parameters. The use of such randomized
signal classes in the simulation experiments results
in a more realistic assessment of the variability of
performance that can be expected for the different
denoising methods. Some of the results presented

here have previously appeared in the conference
paper [13].

2 Methods

2.1 Wavelet Shrinkage Denoising

Assume that the observed data

X[n] = S[n] +G[n]
contains the true signal S[n] with additive Gaus-
sian noise G[n] as functions in time at sample
points n. Let W(·) and W−1(·) denote the for-
ward and inverse wavelet transform operators. Let
D(·, λ) denote the denoising operator with soft
threshold λ. We intend to wavelet shrinkage de-
noise X[n] in order to recover Ŝ[n] as an estimate
of S[n]. Then the three steps

Y = W(X)

Z = D(Y, λ)
Ŝ = W−1(Z)

summarize the procedure.
Given threshold λ for data U (in any arbitrary

domain – signal, transform, or otherwise), the rule

D(U, λ) ≡ sgn(U)max(0, |U | − λ)
defines nonlinear soft thresholding. The operator
D nulls all values of U for which |U | ≤ λ and
shrinks toward the origin by an amount λ all val-
ues of U for which |U | > λ. It is the latter aspect
that has led to D being called the shrinkage oper-
ator in addition to the soft thresholding operator.

To determine λ, let’s say that the data has sam-
ple size or length N if it has been sampled at N
time points ni such that Xi ≡ X[ni]. Then for an
orthogonal W , there will also be N transform co-
efficients Yj . If we prefer to use a threshold (such
as the minimax threshold or the universal thresh-
old [4]) that depends only on N , then λ can be
predetermined and we can use the three-step de-
noising procedure already described. However, if
we prefer to use a data-adaptive threshold

λ = d(U)
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(such as the threshold selected by Stein’s unbiased
risk estimator (SURE) [5]) that depends not just
on N but on U (which again represents the data in
any generic domain), then we must use a four-step
procedure

Y = W(X)

λ = d(Y )

Z = D(Y, λ)
Ŝ = W−1(Z)

for wavelet shrinkage denoising. Note the dis-
tinction between the operator d(·) that selects the
threshold and the operator D(·, ·) that performs the
thresholding.

Implementation of W will not be reviewed
here. Recall, however, that a wavelet transform
must be specified by its analysis and synthesis
wavelet filter banks, single-level convolutions and
boundary treatment, and the total number L of it-
erated multiresolution levels [12]. Thus, we can
generate many different kinds of wavelet shrink-
age denoising procedures by combining different
choices for W(·) and d(·). If we let D denote more
generally either the soft thresholding operator Ds

or the hard thresholding operator Dh [4], then by
combining choices for W(·), D(·, ·), and d(·), we
can generate even more different kinds of wavelet-
based denoising.

Denoising by thresholding in the wavelet do-
main has been developed principally by Donoho et
al. [4, 5, 3, 6]. In [4], they introduced RiskShrink
with the minimax threshold, VisuShrink with the
universal threshold, and discussed both hard and
soft thresholds in a general context that included
ideal denoising in both the wavelet and Fourier
domains. In [5], they introduced SureShrink with
the SURE threshold, WaveJS with the James-Stein
threshold, and LPJS also with the James-Stein
threshold but in the Fourier domain instead of
the wavelet domain. The procedure LPJS was
renamed FourJS (analogous to WaveJS) for con-
sistency of mnemonics by Taswell [15], who also
labelled the various denoising procedures respec-
tively ‘RIS’, ‘VIS’, ‘IWD’, ‘IFD’, ‘SUR’, ‘WJS’,

and ‘FJS’ for use as abbreviations.
These procedures can be classified by trans-

form domain, Fourier versus wavelet, as well as by
intent of use, ideal versus practical. An ideal pro-
cedure requires a priori knowledge of the noise,
whereas a practical procedure does not, so that
ideal procedures are only used for purposes of
comparison in simulation experiments. More-
over, the procedures can be classified according to
whether they use a single threshold globally for all
relevant parts of the transform, or multiple thresh-
olds locally for different parts of the transform
(Fourier frequency bands or wavelet multiresolu-
tion levels). For example, ‘VisuShrink’ (‘VIS’) is
a practical, wavelet domain, global threshold pro-
cedure in which λ = √

2 logN is used for all lev-
els l = 1, . . . , L from fine to coarse. As another
example, ‘SureShrink’ (‘SUR’) is also a practical
wavelet procedure but it uses a local threshold λl
estimated adaptively for each level l.

Wavelet shrinkage denoising results reported
here were generated with Version 4.6c1 of the
WAVB✸X Software Library [11] using orthogo-
nal discrete wavelet transforms and wavelet filters
from the systematized collection of Daubechies
wavelets [14], in particular, DROLA(10;5).

2.2 Simulation Experiments

Randomized signal classes, called ‘Random
Blocks’, ‘Random Spires’, and ‘Random Heavi-
Sine’, were defined to generate signals analogous
to the original ‘Blocks’, ‘Spires’, and ‘HeaviSine’.
Figure 1 displays the original nonrandomized ver-
sions in the top row of subplots, and one instance
each of the randomized versions in the bottom row
of subplots. Table 1 lists the mathematical formu-
lae for the test signal classes. These formulae are
valid for both the randomized and original non-
randomized versions with the appropriate choice
of parameters. Table 2 lists the MATLAB pseu-
docode expressions for the set of parameters cho-
sen for the randomized classes used in the experi-
ments reported here.
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Instances of randomized signals were gener-
ated from the signal classes, corrupted with ad-
ditive Gaussian noise with a signal-to-noise ratio
SNR = 10, and then denoised with each of the var-
ious denoising methods. Performance of the de-
noising procedures on the signal classes was stud-
ied as a function of signal length N = 2J over T
trials of the simulation. Several criteria, includ-
ing the SNR and the �1, �2, and �∞ norms, were
used as objective figures of merit for comparing
the original signal St [n] with the denoised estimate
Ŝt [n] in the t th trial. Results were averaged over
signal instances for all trials t = 1, . . . , T in each
signal class and reported with means, standard de-
viations, and coefficients of variation. SNR was
computed as

SNR(St , Ŝt ) = 10 log10

∑N
n=1 |St [n]|2

∑N
n=1 |St [n] − Ŝt [n]|2

in decibels (dB). For each figure of merit in each
trial, the rank order of the various denoising pro-
cedures as determined by that figure of merit was
computed and then averaged over all trials. Ta-
ble 3 summarizes the basic design parameters for
the Monte Carlo simulation experiments used for
all signal classes and denoising procedures.

3 Results

As expected, the coefficients of variation (ra-
tios of standard deviation to mean) were observed
to be significantly larger for the randomized sig-
nal classes when compared with the original fixed
signal classes. Table 4 displays an example with
‘VIS’ that demonstrates an increase of approxi-
mately 2 – 10 fold for SNR values. Analogous
results with increased coefficients of variation for
SNR values were also observed for the other meth-
ods with the amount of increase dependent upon
signal class, signal length, and denoising proce-
dure. However, Table 5 displays an example with
‘SUR’ that demonstrates greater robustness, i.e.,,
less difference between fixed and random signal

classes, when SNR ranks instead of SNR values
were used in the comparison. Nevertheless, in
most cases, the random signal classes manifested
greater variability than the fixed signal classes.

Continuing the ‘SUR’ example, Tables 6 and
7 present the SNR values and ranks with results
expressed as the mean ±1 standard deviation from
all trials. Recall that SNR values are reported in
dB while SNR ranks are reported in the interval
[1, 7] because there were seven different denois-
ing procedures tested and then ranked with 1 as-
signed to the worst (with the lowest SNR dB value)
and 7 to the best (with the highest SNR dB value).
Note again the greater differences between fixed
and random classes with the use of SNR values
versus ranks.

Figures 2 and 3 plots curves with results, re-
spectively, for the SNR values and ranks for all
seven denoising procedures as functions of J =
log2N with each point and error bar correspond-
ing to the mean ±1 standard deviation from all
trials. Large differences between fixed and ran-
dom classes necessarily impact the statistical va-
lidity of comparisons of the denoising procedures.
For example, in Figure 2 when comparing per-
formance by SNR values of the methods on the
signal classes, the error bars do not overlap for
‘Blocks’ but do overlap for ‘Random Blocks’, im-
plying that any differences between the methods
are not statistically significant for this random-
ized signal class under the experimental condi-
tions investigated. However, in Figure 3 when
comparing performance by SNR ranks, the error
bars for ‘VIS’ and ‘SUR’ do not overlap for ‘Ran-
dom Blocks’, implying that in this case the method
‘VIS’ does perform significantly worse than the
method ‘SUR’.

Assuming that the randomized classes are a
more appropriate simulation of real-world situa-
tions and data, then the following results can be
summarized from inspection of the bottom row
subplots in Figure 3: As expected by theory, ideal
wavelet denoising (‘IWD’) performed best. Of
the non-ideal or practical procedures investigated,
VisuShrink (‘VIS’) and SureShrink (‘SUR’) per-
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formed, respectively, worst and best in the majority
of cases studied (i.e.,for the various signal classes
and lengths).

4 Discussion

Monte Carlo simulation experiments have been
performed previously [4, 6, 1, 15, 9, 16, 2, 8] in an
effort to compare various wavelet-based denoising
procedures. Typically, these experiments have in-
volved taking real signals or generating synthetic
signals, adding known amounts of noise, and then
comparing the effectiveness with which various
denoising procedures remove the noise. Unfor-
tunately, the statistical significance of any differ-
ences between the various methods has never been
clearly demonstrated due to the use of qualitative
comparisons by human subjective opinion or of
quantitative comparisons that suffered from insuf-
ficient sample size (i.e., limited number of distinct
test signals in the defined class) and/or absent con-
fidence intervals (i.e., without implicit or explicit
hypothesis testing) for the figure of merit investi-
gated.

In one of the few studies that reported actual
statistical test results, Wachowiak et al. [16] clearly
stated: “Paired Student’s t-tests failed to show
significant differences among the denoising tech-
niques with respect to any merit measure. . . per-
formance was quantified on the basis of the av-
eraged merit measure.” However, the results re-
ported here in Section 3 with the new randomized
signal classes defined in Section 2.2 demonstrate
that the use of averaged merit measures may be in-
adequate to identify differences between denoising
procedures. On the contrary, the use of more robust
measures, such as the figure of merit’s rank instead
of the figure of merit itself, can more definitively
establish significant differences as demonstrated
by the results displayed in Figure 3 for the SNR
ranks versus those in Figure 2 for the SNR values.

The use of both robust measures and random-
ized signal classes have been introduced here to
facilitate the statistically valid comparison of the

performance of wavelet shrinkage denoising meth-
ods. Use of non-robust measures or of non-
randomized signal classes can result in mislead-
ing inferences from invalid comparisons. Careful
attention should be focused on the use of appro-
priately defined measures and signal classes when
evaluating denoising methods in simulation ex-
periments. These experiments can then be used
to compare the performance of various denoising
methods assuming, of course, that the design pa-
rameters for both the randomized signal class and
for the simulation experiment appropriately repre-
sent both the situation and the data in the real-world
context intended for applied use of the denoising
methods.

When there is no statistically significant differ-
ence in the methods’ performance on the defined
signal class for the specified experimental condi-
tions, other criteria such as computational com-
plexity should be used to select a preferred method.
Moreover, if a particular method can be demon-
strated to perform significantly worse than other
competing methods, such as shown here for Vi-
suShrink, it would be prudent to exclude it from
further consideration for use as a denoising method
for the signal class and experimental conditions in-
vestigated.
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Table 1: Mathematical Formulae for Signal Classes

Name Function Kernel Parameters
Blocks f (t) = ∑M

m=1 hmK(t − pm) K(s) = (sgn(s)+ 1)/2 M,hm, pm

Spires f (t) = ∑M
m=1 hmK((t − pm)/wm) K(s) = (|s| + 1)−4 M,hm, pm,wm

HeaviSine f (t) = h1 sin(p1πt)+ ∑M
m=2 hmK(t − pm) K(s) = sgn(s) M, hm, pm

Table 2: Pseudocode Expressions for Parameters Used in Randomized Versions

Name hm pm wm m
Blocks 5*sign(rand(1,11)-0.5).*rand(1,11) sort(rand(1,11)) 1, . . . , 11
Spires 5*rand(1,11) sort(rand(1,11)) 0.05*rand(1,11) 1, . . . , 11

HeaviSine 4 4 1
2*sign(rand(1,2)-0.5).*rand(1,2) sort(rand(1,2)) 2,3

Table 3: Simulation Experiment Design Parameters

T N J L

100 256 8 3
100 512 9 4
100 1024 10 5
80 2048 11 6
40 4096 12 7
20 8192 13 8
10 16384 14 9

Table 4: VIS Denoising: Coefficients of Variation for SNR Values.

Blocks Spires HeaviSine
J Fixed Random Fixed Random Fixed Random
8 2.8501e-002 1.1718e-001 7.9789e-002 1.0950e-001 5.2748e-002 6.5265e-002
9 3.4988e-002 1.3192e-001 5.5483e-002 8.5289e-002 3.5886e-002 5.7628e-002

10 2.3885e-002 1.3916e-001 3.5810e-002 7.8460e-002 3.0110e-002 6.2710e-002
11 1.8842e-002 1.4474e-001 1.9456e-002 5.7327e-002 2.3419e-002 6.8886e-002
12 1.5847e-002 1.2818e-001 1.6622e-002 5.0351e-002 2.4020e-002 5.3679e-002
13 1.0527e-002 8.9286e-002 1.0516e-002 4.1403e-002 1.2165e-002 7.0534e-002
14 6.7975e-003 1.1607e-001 7.8823e-003 5.1193e-002 1.4964e-002 1.1089e-001
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Table 5: SUR Denoising: Coefficients of Variation for SNR Ranks.

Blocks Spires HeaviSine
J Fixed Random Fixed Random Fixed Random
8 2.4330e-001 3.1641e-001 3.8317e-001 4.1271e-001 2.3139e-001 2.1446e-001
9 2.8785e-001 3.4927e-001 8.9728e-002 2.3793e-001 2.3570e-001 2.4149e-001

10 2.1884e-001 3.5904e-001 9.1179e-002 1.9156e-001 2.2765e-001 2.1524e-001
11 2.4530e-001 2.8633e-001 2.6295e-002 1.4172e-001 1.9139e-001 1.8090e-001
12 8.4628e-002 2.2624e-001 0 1.1720e-001 1.3020e-001 1.7733e-001
13 9.3271e-002 2.0194e-001 3.7581e-002 7.0757e-002 3.7581e-002 6.2624e-002
14 0 5.3598e-002 0 0 0 0

Table 6: SUR Denoising: SNR Values in dB.

Blocks Spires HeaviSine
J Fixed Random Fixed Random Fixed Random
8 11.8±0.74 14.8±1.54 10.7±1.34 12.3±0.91 18.4±0.99 18.1±0.96
9 13.9±0.74 16.9±1.72 12.8±0.47 14.6±0.99 20.5±0.76 20.5±1.13

10 15.7±0.33 18.7±1.98 14.2±0.51 16.8±0.96 22.7±0.75 22.2±1.38
11 17.1±0.44 20.8±1.89 16.7±0.27 19.1±0.86 24.7±0.69 24.2±1.49
12 19.1±0.26 22.9±1.76 19.0±0.23 21.4±0.82 27.0±0.85 26.3±1.42
13 20.9±0.47 24.8±1.44 21.6±0.54 23.8±0.84 28.9±0.44 28.4±1.77
14 23.1±0.24 26.9±0.90 24.1±0.19 26.5±0.97 30.6±0.57 31.4±1.73

Table 7: SUR Denoising: SNR Ranks ∈ [1, 7].
Blocks Spires HeaviSine

J Fixed Random Fixed Random Fixed Random
8 2.30±0.56 2.48±0.78 3.94±1.51 3.39±1.40 3.98±0.92 4.14±0.89
9 3.27±0.94 2.69±0.94 5.56±0.50 4.49±1.07 4.00±0.94 4.46±1.08

10 3.61±0.79 3.16±1.13 5.40±0.49 4.71±0.90 4.24±0.97 4.84±1.04
11 3.83±0.94 4.08±1.17 5.98±0.16 5.50±0.78 4.48±0.86 4.91±0.89
12 4.93±0.42 4.48±1.01 6.00±0.00 5.65±0.66 5.50±0.72 5.33±0.94
13 5.50±0.51 5.15±1.04 5.95±0.22 5.80±0.41 5.95±0.22 5.85±0.37
14 6.00±0.00 5.90±0.32 6.00±0.00 6.00±0.00 6.00±0.00 6.00±0.00
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Figure 1: Standardized Test Signals.
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Error of Denoised Test Signals (Varying L = max, E = SNR2)

8 10 12 14

10

15

20

25

30

35

Blocks

8 10 12 14

10

15

20

25

30

35

Random Blocks

8 10 12 14

10

15

20

25

30

35

Spires

8 10 12 14

10

15

20

25

30

35

Random Spires

8 10 12 14

10

15

20

25

30

35

HeaviSine

8 10 12 14

10

15

20

25

30

35

Random HeaviSine

IFD
IWD
FJS
WJS
RIS
VIS
SUR

Figure 2: SNR Values in dB for Denoised Test Signals.

Error Rank of Denoised Test Signals (Varying L = max, E = SNR2)
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Figure 3: SNR Ranks ∈ [1, 7] for Denoised Test Signals.


