

Wavelet Transform Algorithms for

Finite-Duration Discrete-Time Signals∗

Carl Taswell† and Kevin C. McGill‡

Original 1 August 1991, Revised 1 October 1993

Abstract

The algorithms split for the wavelet transform and merge for the inverse wavelet

transform are presented for finite-duration discrete-time signals of arbitrary length not

restricted to a power of 2. Alternative matrix- and vector-filter implementations of

alternative truncated, circulant, and extended versions are discussed. Matrix- and

vector-filter implementations yield identical results and enhance, respectively, didactic

conceptualization and computational efficiency. Truncated, circulant, and extended

versions produce the signal-end effects of, respectively, errors, periodization, and re-

dundancy in the transform coefficients. The use of any one of these three versions

avoids the signal-end effects associated with the other two versions. Additional alter-

natives which eliminate all signal-end effects (albeit at the cost of increased algorithmic

complexity) are discussed briefly.

Categories and Subject Descriptors:

G.1.2 Numerical Analysis: Approximations;

G.4 Mathematics of Computing: Mathematical Software;

I.4.5 Transform Methods: Reconstruction.

General Terms:

Algorithms, Signal Processing, and Waveform Analysis.

Additional Key Words and Phrases:

Wavelets, Wavelet Transform, Multiresolution Analysis.

∗A preprint of this paper has been available as Numerical Analysis Project Manuscript NA-91-07, De-

partment of Computer Science, Stanford University.
†C. Taswell is with Scientific Computing and Computational Mathematics, Bldg 460 Room 314, Stanford

University, Stanford, CA 94305-2140; Email: taswell@sccm.stanford.edu; Phone: 415-723-4101.
‡K. C. McGill is with Rehabilitation Research and Development Center, Veterans Affairs Medical Center,

Palo Alto, CA 94304-1200; Email: mcgill@roses.stanford.edu; Phone: 415-858-3991x4477.

Taswell/McGill Wavelet Transform Algorithms 2

1 Introduction

The theory of wavelet transforms and multiresolution analyses has been presented and

reviewed by various authors [3, 6, 10, 5, 9]. However, these and other articles that have

appeared in the literature do not provide an exposition of algorithms sufficiently detailed

to expedite their use in practical applications by those not specializing in the theory. More-

over,these general algorithms have been presented for finite-duration discrete-time signals

restricted to a length equal to a power of 2. Finally, the issues of errors, periodization,

and redundancy in the transform coefficients at the signal ends have been mentioned but

not sufficiently documented to allow the user to select one of several alternative transform

algorithms most suited to the requirements of the application. In this report, we discuss

these issues as they relate to specific algorithms for finite-duration discrete-time signals

of arbitrary length not restricted to a power of 2. We assume that the reader is familiar

(cf. [10]) with the basic concepts of multiresolution analysis and the wavelet transform, in

particular, the decomposition of a signal into details and approximations on a dyadic scale

with individual transform coefficients derived from dilates and translates of the wavelet.

2 Wavelet Transform Algorithms

The wavelet transform algorithms presented here perform multiresolution analyses based

on the pyramid algorithm [1, 6, 9], with two modifications to allow transformation of

signals of arbitrary length. First, appropriately sized filter matrices are used at each

multiresolution scale; and second, an additional bookkeeping vector is used to track the

lengths of the details at each scale. Thus, for multiresolution scales j = 1 . . . J , the

algorithms decompose the signal x into the details dj = Hjaj−1 and approximations aj =

Ljaj−1 using the initialization a0 = x and the high- and low-pass filter matrices Hj and Lj

corresponding to the wavelet and scaling functions ψ and φ, respectively.1 The algorithms

1Matrices and vectors are denoted with upper- and lower-case letters, respectively. Matrices, vectors, and

partitions composed of two or more elements from matrices or vectors are denoted with bold fonts. Scalars

Taswell/McGill Wavelet Transform Algorithms 3

concatenate the details (during successive cycles of the j loop) and final approximation

(after completion of the j loop) in the wavelet transform vector

x̂ =

d1

...

dJ

aJ

(1)

and store the lengths of the initial approximation and details in the bookkeeping vector

b =

length(a0)

length(d1)
...

length(dJ)

(2)

With this data storage convention for the transform x̂ and bookkeeper b, the ith transform

coefficient x̂i is the detail coefficient djk derived from the jth dilation and kth translation of

the wavelet function ψ. Thus, x̂i = djk where i = k+
∑j

l=2 bl for 1 ≤ j ≤ J and 1 ≤ k ≤ bj+1.

Using this convention together with the necessary bookkeeping operations, the algorithms

then reconstruct x = a0 from x̂ and b by the iteration aj−1 = (Lj)
T
aj + (Hj)

T
dj for scales

j = J . . . 1. For cases where exact reconstruction may not be possible, let a = a0 denote

the inverse transform assumed to approximate the signal so that the error e = x − a and

relative mean square error rmse(a) = ‖e‖2/‖x‖2 can be calculated for a ≈ x.

The filter matrices Hj and Lj can be constructed from the filter vectors h and l com-

posed of the coefficients specifying the wavelet and scaling functions ψ and φ, respectively.

However, to increase computational efficiency and decrease memory storage, the neces-

sary matrix-vector multiplications can be performed implicitly using only the filter vec-

tors without explicitly constructing the filter matrices. The following algorithms for the

discrete-time wavelet transform (split) and inverse discrete-time wavelet transform (merge)

account for both possible (matrix-filter and vector-filter) implementations for which the

and single elements from matrices or vectors are denoted with nonbold fonts. All indices for matrices and

vectors begin with the value 1, not 0.

Taswell/McGill Wavelet Transform Algorithms 4

various versions are selected by the switch alt . Three different versions of each of the two

implementations are presented in the algorithms and/or discussed in the text; they are

named according to the filters they use: truncated matrix filters (tmf), circulant matrix

filters (cmf), extended matrix filters (emf), truncated vector filters (tvf), circulant vector

filters (cvf), and extended vector filters (evf).

Algorithm 1 Given the signal x, scaling filter l, version switch alt , and desired trans-
form depth Jdes, the function split returns the transform x̂, bookkeeper b, and computed
transform depth J and length m. If Jdes is not input, its value defaults to ∞ so that the
maximum possible transform depth J is computed.

function [x̂,b, J,m] = split(x, l, alt, Jdes)
if #(input arguments) < 4

Jdes = ∞
end
n = length(x)
a = x
[h, lR,hR, N] = l2h(l)
[J,m] = wtdl(n,N, alt, Jdes)
b = 01:J+1

b1 = n
x̂ = 01:m

p = 1
for j = 1 : J

% this if block for alternative versions of dj = Hjaj−1

if (alt = ‘tmf ’)
d = [fvecmat(hR, N, 	bj/2
, bj, 0)]a

elseif (alt = ‘cmf ’)
d = [fvecmat(hR, N, 	bj/2
, bj, 1)]a

elseif (alt = ‘emf ’)
d = [fvecmat(hR, N, �(N + bj − 1)/2�, bj)]a

elseif (alt = ‘evf ’)
d = comp(conv(h,a))

end
bj+1 = length(d)
q = p+ bj+1 − 1
x̂p:q = d
p = q + 1
% this if block for alternative versions of aj = Ljaj−1

if (alt = ‘tmf ’)
a = [fvecmat(lR, N, 	bj/2
, bj, 0)]a

Taswell/McGill Wavelet Transform Algorithms 5

elseif (alt = ‘cmf ’)
a = [fvecmat(lR, N, 	bj/2
, bj, 1)]a

elseif (alt = ‘emf ’)
a = [fvecmat(lR, N, �(N + bj − 1)/2�, bj)]a

elseif (alt = ‘evf ’)
a = comp(conv(l,a))

end
end
q = p+ bJ+1 − 1
x̂p:q = a

Algorithm 2 Given the transform x̂, bookkeeper b, scaling filter l, and version switch
alt , the function merge inverts the transform x̂, and returns the approximation a = a0 of
the signal x.

function a = merge(x̂,b, l, alt)
N = length(l)
[h, lR,hR, N] = l2h(l)
J = length(b) − 1
q = length(x̂)
p = q − bJ+1 + 1
a = x̂p:q
for j = J : −1 : 1

q = p− 1
p = q − bj+1 + 1
d = x̂p:q
% this if block for alternative versions of aj−1 = (Lj)

T
aj + (Hj)

T
dj

if (alt = ‘tmf ’)
a = [fvecmat(lR, N, bj+1, bj, 0)]Ta + [fvecmat(hR, N, bj+1, bj, 0)]Td

elseif (alt = ‘cmf ’)
a = [fvecmat(lR, N, bj+1, bj, 1)]Ta + [fvecmat(hR, N, bj+1, bj, 1)]Td

elseif (alt = ‘emf ’)
a = [fvecmat(lR, N, bj+1, bj)]

Ta + [fvecmat(hR, N, bj+1, bj)]
Td

elseif (alt = ‘evf ’)
a = [conv(lR,dila(a)) + conv(hR,dila(d))]N :N+bj−1

end
end

In these algorithms, vR denotes the vector v with elements in reverse order; �·� denotes

the largest integer less than or equal to its argument; and 	·
 denotes the smallest integer

greater than or equal to its argument. The vector-filter versions evf of split and merge

Taswell/McGill Wavelet Transform Algorithms 6

call the functions conv , comp, and dila, which are discussed in Section 6. Each of the

matrix-filter versions tmf , cmf , and emf of split and merge call the following function for

the construction of a matrix filter from a vector filter (fvecmat).

Algorithm 3 Given the vector filter f of length N , desired size of r rows and c columns
for the matrix filter F, the function fvecmat returns the extended matrix filter F = Femf . If
the logical switch cir is passed as a fifth input argument, then fvecmat returns the circulant
matrix filter F = Fcmf for cir = 1 and the truncated matrix filter F = Ftmf for cir = 0.

function F = fvecmat(f , N, r, c, cir)
k = N − 2
F = 01:r,1:2r+k

for i = 1 : r
Fi,2i−1:2i+k = f

end
if #(input arguments) = 5

k = k/2
if cir

r = 2r
F:,k+1:2k = F:,k+1:2k + F:,r+k+1:r+2k

F:,r+1:r+k = F:,r+1:r+k + F:,1:k

end
end
F = F:,k+1:k+c

These algorithms assume that the filter vectors h, l, and f are implemented as row vectors

whereas all other vectors (such as signal x, detail d, and approximation a) in linear alge-

braic equations are implemented as column vectors. Furthermore, these algorithms require

that the coefficient sum of the filter vector l is normalized to
√

2, that is,
∑N

i=1 li =
√

2.

The family of closest-to-linear-phase compactly-supported orthogonal wavelet and scaling

functions discovered by Daubechies [4] are used for the examples presented throughout

this report and are denoted ψN and φN with corresponding filter vectors hN and lN where

N is the number of coefficients required to specify the function and corresponding filter.2

The wavelet filter h is generated from the scaling filter l by the following function (l2h).

Algorithm 4 Given the scaling filter l, the function l2h returns the corresponding wavelet
filter h, the time-reversed filters lR and hR and their length N .

2The N used in this report equals 2 times the N used by Daubechies [4].

Taswell/McGill Wavelet Transform Algorithms 7

function [h, lR,hR, N] = l2h(l)
N = length(l)
lR = rev(l)
h = lR

for i = 2 : 2 : N
hi = −hi

end
hR = rev(h)

In this algorithm, the function rev reverses the order of the elements of its vector argument.3

Finally, split also calls the following function for the wavelet transform depth and length

(wtdl) which necessitates a definition for the computed transform depth J and length nx̂.

First, let Jdes be the desired transform depth. Now for cmf and emf versions, let J be

set to the maximum j such that 1 ≤ length(dj) < length(dj−1) and such that the matrix

identity (Lj)
T
Lj + (Hj)

T
Hj = I holds true for j ≤ Jdes. Then let nx̂ = length(x̂) for the

transform x̂ associated with this depth J . For the tmf version, let J and nx̂ be the same

as those obtained for the cmf version. The values for the vector versions (tvf , cvf , and

evf) are always the same as those for the corresponding matrix versions (tmf , cmf , and

emf).

Algorithm 5 Given the signal length n = nx, scaling- and wavelet-filter length N , version
switch alt , and desired transform depth Jdes, the function wtdl returns the computed
transform depth J and transform length m = nx̂.

function [J,m] = wtdl(n,N, alt, Jdes)
J = 0
m = 0
if (alt = ‘tmf ’) or (alt = ‘cmf ’)

N = N/2
if (N mod 2)

N = N − 2
else

N = N − 1
end
if (N < 2)

3In Matlab c©, the functions fliplr and flipud perform this reverse-ordering operation for row and column

vectors, respectively.

Taswell/McGill Wavelet Transform Algorithms 8

N = 2
end
while (n ≥ N) and (J < Jdes)

J = J + 1
n = 	n/2

m = m+ n

end
elseif (alt = ‘emf ’) or (alt = ‘evf ’)

while (n ≥ N) and (J < Jdes)
J = J + 1
n = �(n+N − 1)/2�
m = m+ n

end
end
m = m+ n

3 Errors with Truncated Matrix Filters

One way to compute the wavelet transform of a finite-duration signal x of length nx is to

extend the signal infinitely with zero padding on both ends and then compute the infinite

wavelet transform of the padded signal. This infinite transform has only a finite number of

non-zero coefficients, but it is a number greater than nx. Therefore, a naive way to achieve

nx transform coefficients for the finite wavelet transform is to truncate the infinite wavelet

transform to the length nx. We call the corresponding finite matrix filters “truncated

matrix filters”. These truncated matrix filters contain both complete and partial (left-

and right-end truncated) copies of the corresponding vector filter. For example, given an

input vector x of length nx = 12 and vector filter f of length N = 6 (which for display is

Taswell/McGill Wavelet Transform Algorithms 9

taken as fi = i), then the truncated matrix filter

Ftmf =

3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4

(3)

contains 4 complete, 1 left-truncated, and 1 right-truncated copies of f and yields an output

vector y = Ftmfx of length ny = 6. In general, Ftmf has c = nx columns and r = 	nx/2

rows. Now, if f = lR, then Ftmf = Ltmf . Similarly, if f = hR, then Ftmf = Htmf . These

matrices represent a single scale-step wavelet transform which is implemented as one cycle

through the j loop of split . But LtmfL
T
tmf �= I �= HtmfH

T
tmf and LT

tmfLtmf + HT
tmfHtmf �= I for

all nx, so that exact reconstruction with merge.tmf of a signal transformed with split .tmf is

not possible. As a consequence, significant reconstruction error can occur. Figure 1 displays

an example of a random zero-mean unit-variance normal signal x of length nx = 100 and

the reconstruction error e = x − a obtained by transforming x with split .tmf (N = 6)

to yield x̂ of length nx̂ = 103 with b = [100 50 25 13 7 4 2 1] and then inverse

transforming x̂ with merge.tmf (N = 6) to yield a of length na = 100 with relative

reconstruction error rmse(a) = 0.229. Table 1 presents mean rmse(a) values (averaged

from 100 trials) at each combination of varying values of nx = 2J and N . In general,

rmse(a) decreases as J and thus nx = 2J increases for each fixed value of N . More

complicated (i.e.,non-monotonic) patterns of results can be observed for values of nx �= 2J .

Nevertheless, the basic result that rmse(a) decreases as nx increases remains valid in the

sense of a decreasing trend for increasing values of nx �= 2J between successive values of

nx = 2J .

Taswell/McGill Wavelet Transform Algorithms 10

4 Periodization with Circulant Matrix Filters

Exact reconstruction can be achieved at the expense of periodization. Thus, a second way

to compute the wavelet transform of a finite-duration signal is to extend the signal infinitely

with periodic replicas on both ends and then truncate the infinite wavelet transform to

the length nx (in a manner analogous to the finite discrete fourier transform). We call the

corresponding finite matrix filters “circulant matrix filters”. These circulant matrix filters

contain wrapped and nonwrapped copies of the corresponding vector filter. The wrapped

copies circle around from the right to left sides of the matrix. For the same example

associated with Ftmf in Equation 3, the corresponding circulant matrix filter

Fcmf =

3 4 5 6 1 2

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

5 6 1 2 3 4

(4)

contains 4 nonwrapped copies and 2 wrapped copies of f . In general, Fcmf has the same

dimensions as Ftmf . Now let nmin = N/2−1 if N/2 is even, and nmin = N/2−2 if N/2 is odd;

thus, nmin is always odd because N is always even. Then LcmfL
T
cmf �= I �= HcmfH

T
cmf for all

odd nx and LcmfL
T
cmf = I = HcmfH

T
cmf for all even nx > nmin. But LT

cmfLcmf +HT
cmfHcmf = I

for all nx ≥ nmin, so that exact reconstruction with merge.cmf of a signal transformed

with split .cmf is possible. Thus, there is no transform error from circulant matrix filters

as there is from truncated matrix filters. However, there is transform periodization that

manifests itself when the transform is manipulated prior to inverse transformation. This

periodization can be demonstrated by perturbing a single transform coefficient x̂i = djk

and examining the resulting reconstruction error. Figure 2 displays the reconstruction

errors obtained by transforming with split .cmf (N = 6) the same example signal displayed

in Figure 1, perturbing either d3
1 or d3

13, and then inverse transforming with merge.cmf

(N = 6). Since both tmf and cmf versions yield the same number of transform coefficients

Taswell/McGill Wavelet Transform Algorithms 11

for the same N , b is the same in both cases and thus in both Figures 1 and 2. The detail

coefficients that were perturbed for Figure 2 correspond to the coefficients obtained from

the first and last translations of the third dilation of the wavelet. The perturbations were

adjusted such that the values of rmse(a) for the reconstruction errors in Figure 2 equaled

that in Figure 1, thus enabling visual comparison on the same scale. The periodization is

clearly visible for both examples: when either the left (d3
1) or right (d3

13) signal-end detail

coefficient is perturbed, the resulting reconstruction error wraps around from either the

left to right or right to left ends of the signal, respectively.

5 Redundancy with Extended Matrix Filters

Exact reconstruction without periodization can be achieved at the expense of redundancy

resulting in additional coefficients with the transform length nx̂ greater than the signal

length nx. Thus, a third way to compute the wavelet transform of a finite-duration signal

is to truncate the infinite wavelet transform of the zero-padded signal to the length such

that all non-zero coefficients are retained. We call the corresponding finite matrix filters

“extended matrix filters”. These extended matrix filters contain all the translations of the

corresponding vector filter that yield non-zero transform coefficients for the signal points

in the index interval i = 1 . . . nx. Thus, they contain the same number of complete but

a greater number of partial (left- and right-end truncated) copies of the corresponding

vector filter than do truncated matrix filters. For the same example associated with Ftmf

Taswell/McGill Wavelet Transform Algorithms 12

in Equation 3 and Fcmf in Equation 4, the corresponding extended matrix filter

Femf =

5 6

3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4

1 2

(5)

contains 4 complete, 2 left-truncated, and 2 right-truncated copies of f . In general, Femf

has c = nx columns and r = �(nx + N − 1)/2� > 	nx/2
 rows. Thus, Femf has a larger

row-dimension and yields a larger number of transform coefficients than do Ftmf and Fcmf .

Now LemfL
T
emf �= I �= HemfH

T
emf for all nx but also LT

emfLemf +HT
emfHemf = I for all nx, so that

exact reconstruction with merge.emf of a signal transformed with split .emf is possible.

Thus, there is no transform error from extended matrix filters as there is from truncated

matrix filters. Moreover, there is no transform periodization from extended matrix filters as

there is from circulant matrix filters. However, there is transform redundancy resulting in

additional coefficients. These properties can be demonstrated by continuing the example

from Figures 1 and 2. Thus, Figure 3 displays the reconstruction errors obtained by

transforming with split .emf (N = 6) the same example signal displayed in Figure 1,

perturbing either d3
1 or d3

16, and then inverse transforming with merge.emf (N = 6). Since

emf versions yield a different number of transform coefficients for the same N than do tmf

and cmf versions, b = [100 52 28 16 10 7 6 5] is different in Figure 3 than b =

[100 50 25 13 7 4 2 1] in both Figures 1 and 2. However, the detail coefficients

that were perturbed for Figure 3 also correspond to the coefficients obtained from the first

and last translations of the third dilation of the wavelet as in both Figures 1 and 2. Again,

the perturbations were adjusted such that the values of rmse(a) for the reconstruction

errors in Figure 3 equaled those in Figures 1 and 2. The absence of any periodization is

Taswell/McGill Wavelet Transform Algorithms 13

clearly visible for both examples: when either the left (d3
1) or right (d3

16) signal-end detail

coefficient is perturbed, the resulting reconstruction error does not wrap around from either

end of the signal. However, there is redundancy resulting in additional coefficients with

nx̂ = 129 for the emf version compared to nx̂ = 103 for the tmf and cmf versions.

6 Efficiency with Vector Filters

The matrix-filter versions tmf , cmf , and emf of split and merge are useful for didactic

purposes. They lend themselves especially well to meaningful displays, such as those of

the matrices Ftmf , Fcmf , and Femf in Equations 3–5, which readily enable visual conceptu-

alization of the similarities and differences between the truncated, circulant, and extended

versions. However, as mentioned in Section 2, they are not as efficient in the amount

of memory storage required as the corresponding vector-filter versions tvf , cvf , and evf .

Since these vector-filter versions yield results identical to (albeit more efficiently than)

those of their corresponding matrix-filter versions, the vector-filter versions inherit all of

the properties of the matrix-filter versions discussed in Sections 3–5. As an example of an

explicit implementation of one of the vector-filter versions, split .evf and merge.evf call the

following functions comp, dila, and conv for the compression, dilation, and convolution of

signals.

Algorithm 6 Given the input vector x, the function comp returns the output vector y
as the compressed copy of x obtained by downsampling from the even indices of x. Since
the downsampling rate has period 2, the length of y is essentially half that of x, or more
precisely, �length(x)/2�.

function y = comp(x)
n = length(x)
y = x2:2:n

Algorithm 7 Given the input vector x, the function dila returns the output vector y as
the dilated copy of x obtained by upsampling from x to the even indices of y with zero
filling at the odd indices of y. Since the upsampling rate has period 2, the length of y is
always twice that of x.

function y = dila(x)

Taswell/McGill Wavelet Transform Algorithms 14

n = 2 · length(x)
y = 01:n

y2:2:n = x

Algorithm 8 Given the filter vector f and input vector x, conv returns the output vector
y as the convolution of f with the zero-padded extension of x.

function y = conv(f ,x)
N = length(f)
n = length(x)
m = n+N − 1
x = [0T

1:N−1 xT 0T
1:N−1]

T

y = 01:m

for i = 1 : m
for j = 0 : N − 1

yi = yi + fN−jxi+j
end

end

If split and merge are implemented in a particular language in which a built-in convo-

lution filtering routine is available, then it is not necessary to code a routine for conv . Of

course, it is still necessary to use comp to postprocess the output and dila to preprocess

the input of the built-in function used instead of conv .4 However, if an actual routine

with a for-loop is coded for conv , then it should be modified so that it incorporates the

downsampling of comp when used for split and the upsampling of dila when used for

merge. The following algorithms convcomp and dilaconv provide an example of such an

implementation.

Algorithm 9 Given the filter vector f and input vector x, the function convcomp returns
the output vector y as the compressed (downsampled by 2) convolution of f with the
zero-padded extension of x.

function y = convcomp(f ,x)
N = length(f)
n = length(x)
i = [2 : 2 : (n+N − 1)]
m = length(i)
x = [0T

1:N−1 xT 0T
1:N−1]

T

4In Matlab c©, the function filter can be used as an equivalent to the function conv described here.

Taswell/McGill Wavelet Transform Algorithms 15

y = 01:m

for j = 0 : N − 1
y = y + fN−jxi+j

end

Algorithm 10 Given the filter vector f , input vector x, and desired output vector length
k, the function dilaconv returns the output vector y as the convolution of f with the
zero-padded extension of dilated (upsampled by 2) x.

function y = dilaconv(f ,x, k)
N = length(f)
n = length(x)
y = 01:2(n+N−1)

yN−1+2[1:n] = x

m = 2n+N − 1
i = [1 : m]
x = y
y = 01:m

for j = 0 : N − 1
y = y + fN−jxi+j

end
y = yN :k+N−1

In these algorithms, expressions which contain both vectors and scalars evaluate to vectors.

For example, the subscript expression i + j evaluates to a subscript vector in which each

element is the sum of the corresponding element of the vector i plus the scalar j. All of the

algorithms described in this paper have been written in pseudocode. Actual code written in

the Matlab c© language can be obtained via anonymous ftp from the directory /pub/taswell

at simplicity.stanford.edu (36.8.0.104). The software called WavBox (Copyright c© 1991-93

Carl Taswell) available at this ftp site also contains routines for the computation of wavelet

transforms using biorthogonal wavelets in addition to orthogonal wavelets.

7 Selection of a Transform Algorithm

Wavelet transform algorithms, such as the pyramid algorithm described by Mallat [6] and

the modification consisting of split and merge presented in this report, suffer from a variety

Taswell/McGill Wavelet Transform Algorithms 16

of annoying signal-end effects when applied to finite-duration discrete-time signals. These

signal-end effects include the problems of errors (Section 3), periodization (Section 4), and

redundancy (Section 5) in the transform coefficients. Each one of the three different ver-

sions presented here (truncated, circulant, and extended) eliminates two but not all three

of the different end effects.5 Truncated versions avoid periodization and redundancy but

incur error and can only be used if the signal length is sufficiently long to reduce the error

to tolerable amounts. Circulant versions avoid error and redundancy but incur periodiza-

tion and can only be used if any potential manipulation of the transform coefficients does

not lead to harmful periodization. Extended versions avoid error and periodization but

incur redundancy and can only be used if the additional coefficients are sufficiently small

in number to meet data storage requirements or data transmission rates. Since all three

versions have essentially the same computational complexity, the user can select one of

the three transform algorithms most appropriate to the requirements of the application

as determined by which end effects need to be avoided. However, if increased complexity

is not considered to be a determining factor in the selection of an algorithm, then it is

possible to eliminate all three end effects. McGill and Taswell [7, 8] proposed a method

that accomplishes this task using the usual wavelet filters to process the entire signal in-

cluding the ends. Cohen, Daubechies, and Vial [2] have presented an alternative method

that employs the usual wavelet filters for the interior of the signal and different boundary

wavelet filters at the ends of the signal.

5Actually, for signals of length nx = 2J , truncated and circulant versions accumulate 0 additional coef-

ficients per scale, and for signals of length nx �= 2J , they accumulate at most 1 additional coefficient per

scale but only if the approximation length is odd at that scale. In comparison, extended versions always

accumulate N − 1 additional coefficients per scale for all signal and approximation lengths. Thus, we con-

sider truncated and circulant versions to eliminate redundancy completely for signals of length nx = 2J , and

effectively if not completely for signals of length nx �= 2J .

Taswell/McGill Wavelet Transform Algorithms 17

References

[1] Burt, P. J., and Adelson, E. H. The laplacian pyramid as a compact image code.

IEEE Trans. on Com. 31, 4 (Apr. 1983), 532–540.

[2] Cohen, A., Daubechies, I., and Vial, P. Wavelets and fast wavelet transforms

on the interval. 1992 preprint.

[3] Daubechies, I. Orthonormal bases of compactly supported wavelets. Communica-

tions on Pure and Applied Mathematics 41 (1988), 909–996.

[4] Daubechies, I. Orthonormal bases of compactly supported wavelets. ii. variations

on a theme. SIAM Journal on Mathematical Analysis (1991). in preparation.

[5] Heil, C. E., and Walnut, D. F. Continuous and discrete wavelet transforms.

SIAM Review 31, 4 (Dec. 1989), 628–666.

[6] Mallat, S. G. A theory for multiresolution signal decomposition: The wavelet

representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11,

7 (July 1989), 674–693.

[7] McGill, K., and Taswell, C. Wavelet transform algorithms for finite-duration

discrete-time signals: Elimination of signal-end effects. 1991 preprint.

[8] McGill, K., and Taswell, C. Wavelet transform algorithms for finite-duration

discrete-time signals. In Proceedings of the International Conference on Wavelets and

Applications, Toulouse France, June 1992 (1993), Y. Meyer and S. Roques, Eds.,

Editions Frontieres, pp. 221–224.

[9] Rioul, O., and Vetterli, M. Wavelets and signal processing. IEEE Signal Pro-

cessing Magazine 8, 4 (Oct. 1991), 14–38.

[10] Strang, G. Wavelets and dilation equations: A brief introduction. SIAM Review

31, 4 (Dec. 1989), 614–627.

Taswell/McGill Wavelet Transform Algorithms 18

Table 1: Mean rmse(a) values for random normal signals of length nx = 2J transformed

with split .tmf and then inverse transformed with merge.tmf using wavelet and scaling

filters of length N (cf. Section 3).

N = 4 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16 N = 18 N = 20

J = 5 0.1513 0.3470 0.1414 0.0373 0.1230 0.2802 0.1248 0.0408 0.1030

J = 6 0.1142 0.2622 0.1113 0.0303 0.1015 0.2158 0.1063 0.0360 0.0877

J = 7 0.0881 0.2007 0.0862 0.0238 0.0817 0.1641 0.0845 0.0299 0.0742

J = 8 0.0689 0.1482 0.0686 0.0180 0.0653 0.1226 0.0653 0.0231 0.0610

J = 9 0.0493 0.1146 0.0502 0.0147 0.0486 0.0922 0.0514 0.0183 0.0464

-2

0

2

0 20 40 60 80 100

x

-2

0

2

0 20 40 60 80 100

e = x - a

Taswell/McGill Wavelet Transform Algorithms 19

Figure 1: Plots of a random normal signal x and its reconstruction error e = x − a

after transforming x with split .tmf and then inverse transforming x̂ with merge.tmf using

wavelet and scaling filters of length N = 6 (cf. Section 3).

-2

0

2

0 20 40 60 80 100

e = x - a (j = 3, k = 1)

-2

0

2

0 20 40 60 80 100

e = x - a (j = 3, k = 13)

Taswell/McGill Wavelet Transform Algorithms 20

Figure 2: Plots of reconstruction errors obtained from transforming the same random

normal signal displayed in Figure 1 with split .cmf , perturbing the indicated detail coeffi-

cient djk, and then inverse transforming with merge.cmf using wavelet and scaling filters

of length N = 6 (cf. Section 4).

-2

0

2

0 20 40 60 80 100

e = x - a (j = 3, k = 1)

-2

0

2

0 20 40 60 80 100

e = x - a (j = 3, k = 16)

Taswell/McGill Wavelet Transform Algorithms 21

Figure 3: Plots of reconstruction errors obtained from transforming the same random

normal signal displayed in Figure 1 with split .emf , perturbing the indicated detail coeffi-

cient djk, and then inverse transforming with merge.emf using wavelet and scaling filters

of length N = 6 (cf. Section 5).

