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Abstract

Explicit algorithms are presented for the generation
of Daubechies compact orthogonal least asymmetric
wavelet filter coefficients and the computation of their
Holder regularity. The algorithms yield results for
any number N of vanishing moments for the wavelets.
These results extend beyond order N = 10 those
produced by Daubechies for the values of the filter
coefficients and those produced by Rioul for the val-
ues of their Holder regularity. Moreover, they reveal
that the choice of phase for the filters published by
Daubechies for orders N = 4 to N = 10 was not made
consistently. In particular, her filter coefficients for
orders N = 7 to N = 9 should be reflected to their
mirror image sequence.

1 Introduction

Daubechies discovery of compact orthogonal wavelets
[1] remains one of the most important contributions
responsible for the growth of the field of wavelet anal-
ysis over the past decade. Using the same general
approach applied to the original family of wavelets
known as “minimum phase”, Daubechies later added
variations yielding other families such as the “least
asymmetric” family [2, 3]. This particular family was
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used as the base upon which were built the interval
wavelets of Cohen, Daubechies, and Vial [4].

Although mathematical principles are expounded
in these papers, none provide explicit computational
algorithms. In particular, constructing the least
asymmetric wavelets requires selecting roots of a
polynomial. Unless this selection is automated by
an explicit algorithm, it is possible that choices may
not be made consistently in the same manner. In
this report, I present explicit algorithms for the gen-
eration of Daubechies orthogonal least asymmetric
wavelets and computation of their Holder regularity.
The algorithms are applicable to any order N for the
number of vanishing moments of the wavelets.

2 Methods

Wavelet filter coefficients were generated by combin-
ing methods for the construction of the Lagrange à
trous filter polynomials defined by Shensa [5], their
spectral factorization to alternative square root fac-
tors characterized by their total phase non-linearity
as explained by Daubechies [3, 2], labelling the roots
of these factors with a binary code, generating the
possible combinatorial subsets for these binary codes
as explained by Reinhard et al [6], searching through
the subsets of roots to select the one with the min-
imum total phase non-linearity, then comparing the
coefficient sequence from the selected subset of roots
to its mirror image reflected sequence, and finally se-
lecting that root subset and filter sequence which has
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Figure 1: Minimum phase scaling (dashed line) and
wavelet (solid line) functions with N = 16 vanishing
moments.

both the minimum total phase non-linearity, and of
the two complementary sequences with the same to-
tal phase non-linearity, the one with the minimum
total phase delay. Holder regularity of these filter
sequences was computed by a modification of the
method of Rioul [7, 8]. Complete details of the al-
gorithms will be provided in the final version of this
report.

3 Results

Figures 1 and 2 display scaling (dashed lines) and
wavelet (solid lines) functions corresponding to the
scaling and wavelet filter sequences for the minimum
phase and least asymmetric wavelets of order N = 16
with 32 coefficients and support interval of length
32. Figure 3 displays a plot of the Holder regular-
ity α versus the wavelet order N for the minimum
phase (dashed line) and least asymmetric (solid line)
wavelets. Asymptotically, α ≈ N/4 appears to hold
true. Comparison of actual filter coefficient sequences
for orders N = 4 to N = 10 of the least asymmetric
wavelets with the values published by Daubechies [3]

Figure 2: Least asymmetric scaling (dashed line) and
wavelet (solid line) functions with N = 16 vanishing
moments.

Figure 3: Holder regularity α versus number N of
vanishing moments for minimum phase (dashed line)
and least asymmetric (solid line) wavelets.
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reveals that she chose the complementary filter for or-
ders N = 7 to N = 9. This choice is not the one with
the minimum total phase delay of the two comple-
mentary choices which have total phase non-linearity
equal to the minimum.

4 Discussion

Explicit computational algorithms have been devel-
oped for generating Daubechies compact orthogonal
least asymmetric wavelet filter coefficients and com-
puting their Holder regularity. These automated al-
gorithms are valid for any order N of wavelet and
insure that the same consistent choice of roots is
always made in the computation of the filter coef-
ficients. They have been used here to generate all
least asymmetric wavelet filters up to length 64 with
order N = 32 and Holder regularity α as displayed
in Figure 3. Comparison of the generated coefficients
with Daubechies published table [3] revealed that an
inconsistent choice was made in her table for order
N = 7 to N = 9. Similar and/or related inconsis-
tencies may explain the difficulty some readers may
have experienced (as the author has) in using tables
of coefficients for boundary wavelets together with
the interior wavelets for the least asymmetric family
[4]. The importance of preventing such difficulties
justifies the necessity of clarifying explicit algorithms
for the computation of filter coefficients.
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