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ABSTRACT

A new set of wavelet filter families has been added to the system-
atized collection of Daubechies wavelets. This new set includes
complex and real, orthogonal and biorthogonal, least and most dis-
joint families defined using constraints derived from the principle of
separably disjoint root sets in the complexz-domain. All of the new
families are considered to beconstraint selectedwithout a search
and without any evaluation of filter properties such as time-domain
regularity or frequency-domain selectivity. In contrast, the older
families in the collection are considered to besearch optimizedfor
extremal properties. Some of the new families are demonstrated
to be equivalent to some of the older families, thereby obviating
the necessity for any search in their computation. A library that
displays images of all filter families in the collection is available at
<www.toolsmiths.com>.

1. INTRODUCTION

Daubechies wavelet filters with minimal length and maximal
flatness can be readily computed via spectral factorization of a sym-
metric positive polynomial [1]. All of the complex orthogonal,
real orthogonal, and real biorthogonal families of the Daubechies
class computable by spectral factorization have been studied ex-
perimentally in the systematized collection developed by Taswell
[2, 3, 4, 5, 6, 7] over a wide range of vanishing moment numbers
and filter lengths.

In contrast, angular parameterization methods have usually
been demonstrated for wavelets with only one vanishing moment
(i.e., less than maximal flatness) and very short length filters [8, 9]
with the exception of [10]. But the latter only verified orthogo-
nality and vanishing moment numbers for the filters and did not
attempt any search through the angular parametrization space for
filters with desirable properties.

These comments highlight the essential question in the devel-
opment of an algorithm for the design of wavelet filters: How
much computational effort (measured by time, flops, and complex-
ity of implementation) should be expended in the construction of
a wavelet filter possessing which properties over which range of
filter lengths? A basic assumption inherent in the systematized
collection of Daubechies wavelets [6] hypothesizes that the spec-
tral factorization approach affords the most economical generation
of wavelet filters with the best variety and combination of properties
over the widest range of filter lengths.

The economy of the spectral factorization method in compar-
ison with the angular parameterization method is achieved by the
reduced size of the search space for the filter root codes [6] relative
to that for the filter coefficient angles [8]. In [6], conjectures were
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made regarding schemes to enhance the efficiency of the combina-
torial search used in the design algorithm. This report investigates
the next step in the development of an efficient algorithm: Can the
search be completely eliminated?

Section 2 clarifies the distinction between constraint selected
and search optimized filter families, explains the principle under-
lying the least and most disjoint root sets, and defines the new filter
families. Section 3 presents examples and summaries of results for
all of the new filter families. Section 4 concludes that the searchcan
be eliminated for those search optimized filter families for which
equivalence has been demonstrated with constraint selected filter
families.

2. METHODS

2.1. General Framework

Consider a filter expressed as the complexz-domain polyno-
mial F (z) with corresponding vectors for the rootsz ≡ [zj ] ∈ Z
and the coefficientsf ≡ [fn] ∈ F . Associated withF (z), assume
there exist three parameters, vectorγ ∈ Γ, vectorξ ∈ Ξ, and
scalarλ ∈ Λ, respectively, that index the filter for a defined family,
specify the particular filter within a search space, and characterize
its properties.

Applying this notation to the orthonormal Daubechies [1] and
Rioul [11] wavelets,γ ≡ [γ1, γ2] = [N, K] represents the number
K of vanishing moments for wavelet filters of lengthN = 2K and
N > 2K, respectively. For angle space methods [8] to generate
orthonormal wavelets,ξ represents the set of angles that specifiesf
for F (z). For binomial space methods [6] to generate Daubechies
wavelets,ξ represents the set of binary codes that specifiesz for
F (z). In both cases,λ represents a criterion obtained from an indi-
vidual property or a weighted combination of properties computed
fromz and/orf (such as the filter’s time-domain regularity [12] and
phase nonlinearity [6],et c.) that characterizesF (z).

Thus,γ andξ determineF (z) and thenF (z) determinesλ
with the mapping of spacesΓ × Ξ 7→ F × Z 7→ Λ. The parame-
tersγ andξ that determineF (z) are called theindexing parameter
andspecification parameter, respectively. The parameterλ that is
determined byF (z) is called thecharacterization parameter. If λ
represents an individual property (rather than weighted combina-
tion of properties), thenλ is also termed acharacteristic property
of F (z).

2.2. Existence and Uniqueness

Given a defined filter family indexed byγ, assume for fixed
γ that a finite sequence of filtersFi(z) can be generated by and
evaluated for corresponding sequences, respectively, of specifica-
tion parametersξi and characterization parametersλi. If Ξ is an



unbounded and/or continuous space, then it can be appropriately
bounded and discretized to permit a countably finite sequenceξi.

Assuming restriction to a countably finite spaceΞ, then the cor-
responding spacesF × Z andΛ are also countably finite. Further
assuming a one-to-one invertible mapping and uniqueness of the
elementsλi ∈ Λ, then finite countability of unique elements for
an invertible mapping implies that it is feasible to search for both
elementsλ = mini λi andλ = maxi λi in the range and select
the corresponding filtersFi(z) in the domain.

2.3. Definitions and Inferences

A filter F (z) is calledextremalif it can be shown to possess
a characterization parameter attaining an extreme manifested by
either λ or λ. A filter F (z) is calledsearch optimizedif it is
generated by an algorithm that optimizesλ ∈ Λ with an exhaustive
search to ensure identification of eitherλ or λ. A filter F (z) is
called constraint selectedif it is generated by an algorithm that
specifies sufficient constraints onξ, f , or z to ensure uniqueness
of F (z) and selection ofF (z) without a search. An indexed set
of filters {Fγ(z)} ≡ {F (z; γ) : γ ∈ Γ} is called a family if all
members of the set are generated by thesamealgorithm, a function
g(ξ; γ), g(f ; γ), or g(z; γ), subject to the control of the indexing
parameterγ.

Two different filter families{Fγ(z)} and{F ′
γ(z)} generated

by two different algorithmsg(·; γ) andg′(·; γ) areF -equivalent,
or equivalent with respect to the filter coefficient spaceF , if ‖fγ −
f ′
γ‖ < τ for all γ ∈ Γ with given error toleranceτ(F). Analo-

gously,{Fγ(z)}and{F ′
γ(z)}areZ-equivalent, or equivalent w.r.t.

the filter root spaceZ, if ‖zγ − z′
γ‖ < τ for all γ ∈ Γ with given

error toleranceτ(Z). Finally, they areΛ-equivalent, or equivalent
w.r.t. the characterization parameter spaceΛ, if |λγ − λ′

γ | < τ for
all γ ∈ Γ with given error toleranceτ(Λ).

A search optimized filter is necessarily an extremal filter, whereas
a constraint selected filter may or may not be an extremal filter. If a
constraint selected filter can be shown to be equivalent to a search
optimized filter, then the constraint selected filter is also an extremal
filter. F -equivalence andZ-equivalence of two filter families im-
pliesΛ-equivalence, but the converse is not true.

2.4. Filter Families

All filter families reported here are named, defined, and gen-
erated according to the conventions, notation, and methods estab-
lished in [5, 6] for the systematized collection of wavelet filters
computable by spectral factorization of the Daubechies polynomial.
However, one of the families in [5, 6], DROLD, has been renamed
DROMD in order to achieve consistency with the new collection of
families introduced here: DCOMD, DCOLD, DROMD, DROLD,
DRBMD, and DRBLD.

These acronyms abbreviate ‘D’ for Daubechies, ‘C’ and ‘R’
for complex and real, ‘O’ and ‘B’ for orthogonal and biorthogonal,
and ‘LD’ and ‘MD’ for least and most disjoint. All of these filter
families are constraint selected. They are compared here with other
filter families from [5, 6] that are search optimized.

In addition to the factorization rules [6, Section 2.4.1] imposing
the necessary contraints for complex orthogonality, real orthogo-
nality, and real biorthogonality, the least and most disjoint families
are defined according to constraints derived from the principle of
separably disjoint root sets in the complexz-domain. Consider

only the roots of the quotient filter

QD(z) = (z + 1)−2(D+1)PD(z) (1)

wherePD(z) is the product filter andD is the degree of the Daubechies
polynomial [6, Section 2.1.3]. For spectral factorization, split the
set of roots fromQ(z) into two sets of roots{za

k} and{zs
l } for the

analysis and synthesis filtersA(z) andS(z).
These root sets fromQ(z) must be disjoint with

∅ = {za
k} ∩ {zs

l } (2)

(because common roots atz = −1 for bothA(z) andS(z) from
P (z) have been excluded from consideration). Now let{Ca

i } and
{Cs

j } denote finite collections of open convex regions with the
largest area domains that do not intersect yet still cover the sets
{za

k} and{zs
l }, respectively. More precisely,

∪kza
k ⊂ ∪iCa

i (3)

∪lz
s
l ⊂ ∪jCs

j (4)

∅ = ∩iCa
i (5)

∅ = ∩jCs
j (6)

∅ = (∪iCa
i ) ∩ (∪jCs

j ). (7)

Finally, letC denote the cardinality of the set

{Ca
i : i = 1, . . . , I; Cs

j : j = 1, . . . , J} (8)

as measured by the numberC = I + J of regions covering all
the roots ofQ(z). Then root sets{za

k} and{zs
l } are called least

and most disjoint ifC is, respectively, the maximum or minimum
possible subject to the constraints of the factorization rules imposed.

Spectral factorizations for the filter families designed with most
disjoint rootszj = rje

iθj can be summarized as follows: for
DCOMD, {(zj , z

−1
j ) : (rj < 1) ∧ (θj ≥ 0)} → A(z) and

{(zj , z
−1
j ) : (rj > 1) ∧ (θj ≤ 0)} → S(z); for DROMD,

{(zj , z̄j) : rj < 1} → A(z) and{(zj , z̄j) : rj > 1} → S(z);
for DRBMD, {(zj , z̄j , z

−1
j , z̄−1

j , ) : θj < θ∗} → A(z) and
{(zj , z̄j , z

−1
j , z̄−1

j , ) : θj > θ∗} → S(z). The factorizations
for the DCOLD, DROLD, and DRBLD filters designed with least
disjoint root sets cannot be summarized as concisely. However, the
corresponding algorithms order the roots by angle and impose the
maximum number of alternations for the assignments in the split to
A(z) andS(z). In addition for the biorthogonal case, the algorithm
for DRBLD was modified further to devise another family called
DRBRD with the letters ‘RD’ an abbreviation for regular disjoint.

3. RESULTS

Figure 1 displays spectral factorizations for each of the least
and most disjoint filter families atKa = Ks = 16 for D = 15.
Roots forA(z) andS(z) are marked with o’s and x’s, respectively.
As an example of the principle of minimizing and maximizingC,
observe thatC = 3 for DRBMD andC = 13 for DRBLD. Note
that C 6= 2 for DRBMD because convexity is required for each
of the non-intersecting covering regions, andC 6= 26 for DRBLD
because the largest area possible is required for each of the regions.
Figure 2 displays the wavelets corresponding toA(z) for the six
examples in Figure 1. Both the real parts (solid lines) and imaginary
parts (dotted lines) are shown for the complex wavelets.



The constraint selected filter families introduced here were
compared with the search optimized filter families from [5, 6] for
Ka = Ks = 1, . . . , 24. Each member of the following sets of
filter families was demonstrated to beF -equivalent to the other
members of the set withτ(F) at machine precision:{DRBMD,
DRBMU, DRBLS, DRBLR}, {DRBRD, DRBMR}, {DROMD,
DROMA}, and{DCOMD, DCOMN}. Additional figures avail-
able in [7] display values of various characteristic properties for
the filter families. The families are listed in the legends sorted in
order of the properties’ median values forA(z) over the range of
the indexing parameter.

To assessΛ-equivalence of the families, these figures were
examined visually and the corresponding numerical values in ta-
bles were checked for maximum deviation over the rangeKa =
Ks = 1, . . . , 24. This evaluation revealed the following results:
All of the orthogonal families areΛ-equivalent withτ(Λ) < 0.2 for
time-domain regularity. The orthogonal pair{DROLD, DROLU}
and biorthogonal pair{DRBMR, DRBLU} are eachΛ-equivalent
with regard to time-frequency uncertainty. The orthogonal pair
{DROLD, DROLA} is Λ-equivalent with regard to phase non-
linearity. Note that since the pair{DRBRD, DRBMR} is F -
equivalent, then the pair{DRBRD, DRBMR} isΛ-equivalent with
regard to time-domain regularity and the pair{DRBRD, DRBLU}
is Λ-equivalent with regard to time-frequency uncertainty.

4. CONCLUSION

Precise definitions have been introduced for the various compo-
nents of a general filter design framework consisting of indexing pa-
rametersγ ∈ Γ, specification parametersξ ∈ Ξ, filter coefficients
f ∈ F , filter rootsz ∈ Z, characterization parametersλ ∈ Λ,
their corresponding spaces, and the mappings between the spaces.
Within this framework, definitions have also been introduced for
filter families that are either search optimized or constraint selected
and for their equivalence.

A new set of families was then introduced using the principle of
least and most disjoint root sets measured by the numberC of non-
intersecting open convex regions required to cover the root sets.
The new set of constraint selected families includes the complex
and real, orthogonal and biorthogonal, least and most disjoint fam-
ilies with acronyms DCOLD, DCOMD, DROLD, DROMD, DR-
BLD, and DRBMD, as well as an additional family with acronym
DRBRD for biorthogonal regular disjoint. These families were
evaluated for bothF -equivalence andΛ-equivalence with search
optimized families from [6].

Several pairs of both kinds of equivalence were demonstrated
for both orthogonal and biorthogonal families. IfΛ-equivalence
exists between a constraint selected family and a search optimized
family with respect to a particular characterization parameterλ as
an extremal property, then the constraint selected family can be
used to replace the search optimized family, and thus to obviate
the necessity for a search in the computational algorithm. As an
important example, the DROLD (least disjoint) family can be used
as an effective substitute for the DROLA (least asymmetric) family.

The Λ-equivalent substitution of a constraint selected family
for a search optimized family enables fast computation of those
constraint selected family members for which the corresponding
search optimized family members would require excessively slow
computation. Because of theΛ-equivalence, this substitution can
be performed without any loss greater than the toleranceτ(Λ) for
the parameterλ representing the characteristic property of the filter.
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Disjoint Sets of Daubechies Polynomial Roots
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Figure 1: Examples of disjoint sets of Daubechies polynomial roots.

Wavelets for Disjoint Root Set Examples
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Figure 2: Analysis wavelets for disjoint root set examples.


