
     

Image Compression by Parameterized-Model Coding

of Wavelet Packet Near-Best Bases

Carl Taswell

Scientific Computing and Computational Mathematics
Stanford University, Stanford, CA 94305-2140
Internet e-mail: taswell@sccm.stanford.edu

ABSTRACT

Top-down tree search algorithms with non-additive information cost comparisons as decision criteria have
recently been proposed by Taswell9,10 for the selection of near-best bases in wavelet packet transforms. Advantages
of top-down non-additive near-best bases include faster computation speed, smaller memory requirement, and
extensibility to biorthogonal wavelets in addition to orthogonal wavelets. A new compression scheme called
parameterized-model coding was also proposed and demonstrated for one-dimensional signals.10 These methods
are extended here to two-dimensional signals and applied to the compression of images. Significant improvement
in compression while maintaining comparable distortion is demonstrated for parameterized-model coding relative
to quantized-scalar coding. In general, the lossy compression scheme is applicable for low bit rate coding of the M
largest packets of wavelet packet decompositions with wavelet packet basis libraries and the M atoms of matching
pursuit decompositions with time-frequency atom dictionaries.

Keywords: Image compression, parameterized-model coding, matching pursuit decomposition, wavelet packet
decomposition, near-best basis, non-additive information cost, top-down tree search.

1 INTRODUCTION

Matching pursuit decompositions of images with time-frequency atom dictionaries7,1 yield finite weighted
linear combinations f(x, y) ≈

∑M
i=1 aiwγi(x, y) that approximate the image functions f(x, y) with weighting or

amplitude coefficients a multiplying the atomic waveforms wγ(x, y). These atoms are labeled by the multi-index
γ identifying the atom within a large collection {wγ(x, y)|γ ∈ Γ} of such atoms. Both amplitudes ai and indices γi
constitute necessary information representing the image. This decomposition is usually obtained with the atoms
ordered by decreasing absolute value of the amplitudes. Moreover, if the image is discretized with a total of
N pixels, then the matching pursuit decomposition is computed with M � N atoms. Thus, a complete basis
decomposition with N atomic waveforms in the transform domain is never computed. However, when such a basis
with N waveforms is computed for the wavelet transform, coding of the waveforms with the M largest amplitudes
has also been shown to be a method important for image compression.5 For both cases, the M waveforms of a
matching pursuit decomposition or the M largest waveforms of a complete basis decomposition, how should the
amplitude and index information be further compressed and coded?



       

This question is investigated here in the context of wavelet packet transforms.3 For wavelet packet dictionaries,
the time-frequency atoms are wavelet packets for which the amplitudes a are the wavelet packet transform
coefficients and the waveforms wγ(x, y) are the wavelet packet basis functions labeled by the multi-index γ
specifying scale, orientation, and position information. In this paper, the compression and coding of wavelet
packet bases is studied for the M largest packets obtained from near-best bases selected by a top-down tree search
algorithm with non-additive information cost comparisons as the decision criterion.9,10 Advantages of top-down
non-additive near-best bases include faster computation speed, smaller memory requirement, and extensibility
to biorthogonal wavelets in addition to orthogonal wavelets. In a previous study of these wavelet packet near-
best bases,10 a new compression scheme called parameterized-model coding was proposed and demonstrated for
one-dimensional (1-D) signals. These methods are extended here to two-dimensional (2-D) signals, applied to
the compression of images, and proposed as a possible answer to the question posed above. Feasibility of the
parameterized-model coding scheme is demonstrated for compression of both orthogonal and biorthogonal wavelet
packet decompositions of images. In particular, significantly improved rates of compression are demonstrated for
parameterized-model coding relative to quantized-scalar coding with comparable rates of distortion.

2 METHODS

2.1 Wavelet Packet Decompositions

We consider here various data structures for representing information relevant to 2-D wavelet packet decom-
positions. A 2-D discrete packet transform is considered to be any multiresolution transform (such as a wavelet
packet transform or local trigonometric transform) that yields a table of transform coefficients which can be
organized as a balanced quaternary tree. The table is called a discrete packet table Ptable with levels l and blocks
b of the table corresponding to levels l and branches b of the tree. For the sake of mnemonics, the term branch
is often used here instead of the more customary term node. However, the conventional term node is also used
synonymously in this paper. Thus, the root node at level 0 and the terminal nodes at level L are considered to be
the top and bottom of of the full balanced tree corresponding to the finest and coarsest resolutions of the data.

There are 4l blocks on each level and thus K = (4(L+1) − 1)/3 blocks in the entire table. Within each block
b on level l, there are 4−lN cells c where N = N1N2 is the number of elements in the original data matrix
X ∈ IRN1×N2 . Thus each coefficient in the packet table P can be specified as the 4-vector [a, l, b, c] where a is the
packet’s amplitude and l, b, and c are its level, block, and cell indices. These level, block, and cell indices also
correspond to scale, orientation, and position indices. The position index can be a scalar if the cells in each block
are labelled 0, . . . , 4−lN − 1. Otherwise the position index must be a multi-index specifying both row and column
indices for the cell (which is a pixel in the case of an image).

Thus, if the data X ∈ IRN1×N2 is an image with N = N1N2 pixels, then the wavelet packet transform to a depth
of L levels yields a packet table matrix Ptable ∈ IRN1×(L+1)N2 with a total of (L + 1)N coefficients. A particular
basis within this redundant representation can be specified with the basis selection tree S ∈ χK where each of
the K variables χ = {0, 1} is an indicator variable for the selection of the k

th
block/branch of the table/tree.

The redundant table Ptable ∈ IRN1×(L+1)N2 can then be converted to the non-redundant basis Pbasis ∈ IRN1×N2 . In
WavBox 4,11 the function dpt2dpb (discrete packet table to discrete packet basis) performs this restructuring of
the data via the mapping Pbasis = dpt2dpb(Ptable,S).

To compare various decompositions, it is convenient to convert discrete packet tables Ptable or bases Pbasis to
discrete packet lists Plist representing the selected decompositions. In WavBox 4, the functions dpt2dpl and dpb2dpl
perform this restructuring of the data via the mappings Plist = dpt2dpl(Ptable,S) and Plist = dpb2dpl(Pbasis,S)
where again the functions are named as the abbreviations for their input and output data structures analogous
to the naming convention for dpt2dpb. Each list contains M packets specified as row 4-vectors [ai, li, bi, ci] with



      

rows i = 1, ...,M ordered so that |a1| ≥ · · · ≥ |aM |. To study a complete basis decomposition, we must examine
the entire list where M = N . However, we may also study subsets of the list where M < N , for example, where
we choose M = N 2

.99 < N (see Section 2.2 for explanation of the data compression number N p
f ).

Thus, there are four data structures presented here: Ptable ∈ IRN1×(L+1)N2 , Pbasis ∈ IRN1×N2 , Plist ∈ IRM×4, and
S ∈ χK . Since packet tables Ptable and selection trees S are implemented respectively as matrices and vectors,
table blocks and corresponding tree branches indexed by (l, b) are respectively submatrices and scalars. They are
denoted Ptable

lb ≡ Ptable
ilb,jlb

and Slb ≡ Sklb where for l ∈ {0, 1, . . . , L} and b ∈ {0, 1, . . . , 4l − 1}, the row and column
vector indices ilb, jlb are for level l block b in a table matrix, and the scalar index klb is for level l branch b in a
tree vector. The same holds true analogously for packet bases Pbasis

lb ≡ Pbasis
ilb,jlb

with the proviso that not all levels

l and blocks b of Ptable are stored in Pbasis since Pbasis is not redundant by its definition as a basis. In fact, Pbasis

contains only those blocks b on levels l for which Slb = 1. Correct manipulation of coefficients stored in Pbasis

requires using the level-block indexing information encoded as logical values in S. Finally, with regard to packet
lists Plist, the ith packet together with its index information is denoted Plist

i ≡ [ai, li, bi, ci].

2.2 Non-Additive Information Costs

We consider data matrices X ∈ IRN1×N2 for one parent block and Y1, . . . ,Y4 ∈ IRN1/2×N2/2 for four children
blocks in a wavelet packet table represented by a quaternary tree. We wish to compare their information costs by
some measure used as a decision criterion when searching the quaternary tree. For decompositions of 2-D images,
these costs are computed elementwise for each submatrix block. Thus, the blocks can be described equivalently
as vectors obtained by reindexing the elements of the corresponding submatrices so that we compare the parent
x ∈ IRN with the children y1, . . . ,y4 ∈ IRN/4. Additive costs were originally intended for use with the best bases
of Coifman and Wickerhauser.3 Non-additive costs were proposed for use with the near-best bases of Taswell.9,10

Here we review some of the relevant definitions as needed for this paper.

Definition: A cost functional Cadd from vectors x ∈ IRN to IR is called an additive information cost function
if Cadd(0) = 0 and Cadd(x) =

∑
i Cadd(xi).

Definition: A cost functional Cnon from vectors x ∈ IRN to IR is called a non-additive information cost function
if it serves as a decision criterion for a basis selection algorithm and it is not an additive information cost function
Cadd.

Definition: The inequality Cnon(x) ≤ Cnon(y1, . . . ,y4) between vectors x ∈ IRN and y1, . . . ,y4 ∈ IRN/4 is called
a non-additive information cost comparision if Cnon(y1, . . . ,y4) ≡ Cnon(⊕4

i=1yi) �=
∑4

i=1 Cnon(yi).

We can construct several examples of Cnon starting from the sorted vector [x(k)] where x(1) = |xi1
| ≥ · · ·

≥ x(N) = |xiN
| so that x(k) = |xik

| is the kth largest absolute value element of the vector [xi]. We continue

by constructing the decreasingly sorted, powered, and cumulatively summed vector [vk(x, p)], and renormalized
vector [uk(x, p)] where

uk(x, p) =
vk(x, p)

vN (x, p)
with vk(x, p) =

k∑

i=1

xp
(i)

which then makes it convenient finally to define the examples of Cnon. (Note that 0 ≤ uk(x, p) ≤ 1 because of
the normalization.) Thus, with [x(k)] and [uk(x, p)] obtained from [xi], define the non-additive information cost
functions

Cnon
1 (x) = N p

f (x) = arg min
k

|uk(x, p) − f |

Cnon
2 (x) = Ap(x) = N −

∑

k

uk(x, p)



      

which are respectively the data compression number and data compression area.9,10

2.3 Near-Best Bases

For mathematical convenience, we interpret the matrices X,Y ∈ IRN1×N2 as the vectors x,y ∈ IRN with
N = N1N2 and consider the orthonormal transformation matrix B ∈ IRN×N . Then y = Bx and C(y) are
respectively the coefficient vector and information cost scalar for x in the coordinate system represented by the
basis B. We wish to find a basis B for which C(y) is minimal, subject possibly to some constraint on the search
for the basis B. Coifman and Wickerhauser defined the best basis for additive costs.3 Subsequently, Taswell
defined the near-best basis for non-additive costs,9 and then more generally for both non-additive and additive
costs.10 Here we review definitions for both best and near-best bases.

Definition: The best basis relative to Cadd for a vector x in a library B of bases is that B for which Cadd(Bx)
is minimal.

Definition: The near-best basis relative to C (either Cnon or Cadd) for a vector x in a library B of bases is that
B ∈ B∗ ⊂ B for which C(Bx) is minimal subject to the constraints of the search within the subset B∗ defined by
the search type.

The near-best basis with additive or non-additive costs permits either a bottom-up or top-down search through
the table to find the basis selection tree S. Searches subject to other patterns of constraint are possible as well.
The various search methods are denoted S in general with S = U and S = D indicating bottom-up and top-
down in particular. In WavBox 4, the function dpt2bst performs this mapping from discrete packet table to basis
selection tree as S = dpt2bst(P,S, C). Also in WavBox 4, the function wpt for the wavelet packet transform is one
of several discrete packet transform functions, and dcnum for the data compression number is the mathematical
function N p

f (x) described above in Section 2.2 with default values of p = 2 and f = 0.99 for the parameters.
Using these functions, then the sequence of function calls

Ptable = wpt(X)
S = dpt2bst(Ptable,S, C)
Plist = dpt2dpl(Ptable,S)
M = dcnum(Plist(1 : N, 1))
Plist = Plist(1 : M, 1 : 4)

yields a wavelet packet decomposition returned as a packet list truncated to the M largest absolute value packet
coefficients constituting 99% of the energy of the transform (and of the original data if the transform mapping
is orthonormal). While valid for near-best basis decompositions in general (for further details and discussion,
consult previous papers9,10), this approach fails to exploit the advantages which can be potentially gained in
particular for top-down tree searches with S = D.

2.4 Top-Down Tree Searches

We wish to design an appropriate algorithm specialized for top-down tree searches with S = D operating via
Pbasis instead of the more general algorithm operating via Ptable as described in Section 2.3. Naming this function
wpddb for Wavelet Packet Decomposition by top-Down Basis search, then the pseudocode segment

[Pbasis,S] = wpddb(X)
Plist = dpb2dpl(Pbasis,S)



     

M = dcnum(Plist(1 : N, 1))
Plist = Plist(1 : M, 1 : 4)

incorporating wpddb replaces the more general one incorporating wpt and dpt2bst from Section 2.3. It is also
possible to combine the two functions dpb2dpl and dcnum so that the M -packet truncated list is returned directly
from the combined function. The current method of first returning the complete N -packet list from the function
dpb2dpl , returning M from the function dcnum, and then truncating the N -packet list to an M -packet list requires
significantly more memory. This memory requirement is not necessary and can be eliminated with use of the
combined function if packets Plist

M+1, . . . ,P
list
N are never used in subsequent processing.

Because the algorithm runs unidirectionally downward in the tree, it can be performed essentially “in place”,
thus significantly reducing memory storage requirements from approximately O((L + 1)N) for Ptable in wpt and
dpt2bst to O(2N) for Pbasis and a temporary copy in wpddb. Furthermore, because the algorithm does not
necessarily require that the entire table and tree be generated and searched, it can be performed with significant
savings in machine operations and computing time. This reduction in computational cost corresponds to a number
L̂ representing the number of levels of the transform that need to be computed. This number is estimated by
summing over all levels the fraction of computed blocks to total blocks on each level. Computed blocks include
all ancestral blocks from the root block to the parental blocks above the selected blocks, the selected blocks
themselves, and the four children blocks below each selected block (unless the selected block is already at the
maximum level L). This estimate yields L̂ as a rational (not necessarily integer) number that ranges between 1
and L. Thus, the “in place” algorithm reduces computational costs from approximately O(LN) for Ptable in wpt
and dpt2bst to O(L̂N) for Pbasis in wpddb. The amount by which L̂ ≤ L is dependent on the data and the image
class. However, the reduction in memory storage requirements from O((L + 1)N) to O(2N) is independent of
image class. Nevertheless, for both issues of memory storage and computational cost, the savings for 2-D images
(relative to 1-D signals) can be significant even for small values of N and small differences between L̂ and L.

2.5 Compression and Distortion

For experiments investigating lossy compression of images, we wish to minimize the distortion D resulting
between the reconstruction X̂ and the original X following compression and coding of the wavelet packet de-
composition Plist. Compression can be achieved by truncating the N packets in the list to the M < N largest
absolute-value packets and then quantizing and coding the remaining M packets analogous to the method used
for wavelet transforms5 instead of wavelet packet transforms. Standard methods of coding data include scalar
and vector quantization.6 The quantization and coding of the M packets remaining after truncation of the list
applies only to the amplitudes a and not to the level-l, block-b, and cell-c indices which must be coded without
loss of information. Since the (l, b, c)-index information is retained for each packet retained in this compression
scheme, it is possible to consider other coding schemes for the packet amplitudes a.

Taswell10 proposed a new method incorporating parameter estimation by statistical regression modeling with
Yi = f(Xi,θ)+εi for some function f , parameter θ, and noise εi. In particular, Taswell10 estimated the parameters
of the curve traced by a plot of the dependent variable Yi taken to be the sums vi defined in Section 2.2 as a
function of the independent variable Xi taken to be the index i. This concave curve ascends smoothly to a
horizontal aymptote. It can be modeled by a low order polynomial with coefficients estimated by (possibly
weighted) linear regression. Alternatively, it can be approximated by a variety of well-known nonlinear models
with a small number of parameters including those that can be expressed as generalized linear models and as
non-linear dose-response models.8

Here we consider modeling the smooth curve traced by a plot of the normalized sums ui (also as defined
in Section 2.2 except with the ui obtained from normalization of vi by vM instead of vN ) as a function of the
normalized index (i− 1)/M . Scaling the problem with these normalizations improves the numerical conditioning



    

of the estimation problem. For this parameterization of the variables then, the coding scheme for the amplitude
coefficients of the packet list Plist consists of the steps

1. retain signs si of the packet amplitudes ai,
2. compute the powered cumulative sums vi and retain the normalization sum vM ,
3. normalize the sums vi by vM to obtain the ui,
4. regress on curve of Yi ≡ ui versus Xi ≡ (i− 1)/M estimating θ in Yi = f(Xi,θ) + εi,

5. quantize the estimate θ̂ to desired level of precision,

and the decoding scheme consists of the steps

1. set Xi ≡ (i− 1)/M and estimate Ŷi = f(Xi, θ̂),

2. set ûi ≡ Ŷi and multiply by retained sum vM to estimate v̂i,
3. finite difference the v̂i and multiply by retained signs si to estimate âi.

The choice of regression model has not been specified in the coding and decoding scheme listed above. Actual
implementation of the method requires specifying the functional model f for the shape and fit of the regression
curve. Furthermore, the model can also be enhanced by specifying the nature of any batch processing done. For
example, regression can be performed on groups of packet amplitudes selected by level l (“level grouping”), or by
level l and block b (“block grouping”), or only by packet list order i index without regard to level l and block b

indices (“order grouping”). In the latter case, the number Mg of packets in the g
th

of G groups can be variable or
fixed, whereas in the other cases, Mg is determined by the selection criteria. Of course, in all cases, those packets
selected for the batch processing of each group do remain in correct decreasing absolute value order so that the
coding scheme described above can be applied.

In this paper, we focus our initial pilot study on comparing various batch processing methods used in the
statistical regression model for the packet amplitude coefficients. Thus we ignore entropy coding of indices and
calculation of compression rates based on bit counts. Instead, we consider two stages of compression: Stage 1
with a fixed compression rate of M packets truncated from the list of N packets obtained from the complete
basis decomposition, and Stage 2 with a variable compression rate R measured by summing the number Jg of

regression model coefficients estimated for the Mg packets in the g
th

group parameterized by θg ∈ IRJg . Then for

the original X and reconstructed X̂ images, we compare relative $p-norms of reconstruction errors computed as
measures of distortion Dp = ‖X − X̂‖p/‖X‖p for p = {1, 2,∞}.

In particular, we perform Stage 1 compression only, simulate scalar quantization of the packet amplitudes
by rounding them, call this procedure “quantized scalar coding” (QSC) of the packet amplitudes, and report
a compression rate of R = M . Alternatively, we perform both Stage 1 and Stage 2 compression, simulate
scalar quantization of the model parameter coefficients by rounding them, call this procedure “parameterized
model coding” (PMC) of the packet amplitudes, and report a compression rate of R =

∑G
g=1 Jg. In both

procedures, we ignore the lossless compression obtained by entropy coding the code indices associated with scalar
quantization such as those used in Huffman or arithmetic coding. Furthermore, we also ignore the lossless
compression associated with entropy coding the packet (l, b, c) indices making the assumption that it’s performed
independently of coding the packet a coefficients and thus the same for all the different models. As a consequence,
the comparisons here are meant to be valid for the different models relative to each other within this study and not
relative to some standard requiring compression with actual entropy coding of all the information (both packet
amplitudes and packet indices).



    

3 RESULTS

Experiments were performed on the test image “Elaine” with 640 × 480 pixels displayed in the upper left
of Figure 1. This image with a total of N = 307, 200 pixels was scaled to zero-mean unit-variance and then
wavelet packet transformed to a near-best basis selected by a top-down search S = D with the non-additive cost
function Cnon = A1 for the data compression area. The transform and search were performed to level L = 5 with
Daubechies’ orthogonal least asymmetric length-8 filters4 (DOLA 8) and the Pbasis of N = 307, 200 packets was
converted and truncated to a Plist of M = N 2

0.99 = 17813 packets. This procedure was repeated with the Bradley-
Brislawn biorthogonal symmetric analysis length-7 synthesis length-9 filters2 (BBBS 7,9), yielding a truncated
Plist of M = 18568 packets. The same circular-periodized convolution version was used for both orthogonal and
biorthogonal sets of filters which were chosen for their similar length 8 versus (7,9).

For orthogonal and biorthogonal decompositions, the computed values of L̂ = 2.95 and L̂ = 3.05 respectively
were both significantly less than L = 5 thus demonstrating one of the important advantages of the top-down
tree search over the bottom-up tree search.10 After obtaining both decompositions, the M packets from each
were coded by PMC and QSC as explained in Section 2.5. For PMC, the model used for fitting the data was a
polynomial of variable order found by minimizing the regression error subject to the constraint of between 6 to 12
total coefficients in the model for each group of packets. For PMC with order grouping, the maximum number of
packets per group was set to 1200 insuring that the compression ratio from packet coefficients to model coefficients
for each group could be no greater than 1200/6 or 200/1. For both PMC and QSC, all retained coefficients were
rounded to 11 bits per mantissa and 5 bits per exponent for a total of 2 bytes per coefficient.

Table 1 presents the compression rate R and distortion rates Dp described in Section 2.5 for the image Elaine
when coded by the various methods. Distortion rates for PMC with order grouping were comparable to distortion
rates for QSC despite a significant decrease in the rate R from 17813 to 120 with a ratio of ≈ 148 for the orthogonal
case and from 18568 to 142 with a ratio of ≈ 131 for the biorthogonal case. Since all coefficients were rounded
(simulating quantization) to 2 bytes, simple ratios of numbers of coefficients permit valid comparisons of the
different versions of PMC relative to each other but not to QSC so that the above ratios are misleading. For valid
comparison between PMC and QSC, the information retained in the sign bits for PMC must also be considered.
Therefore, total bits for PMC with order grouping was 17813 ·1+120 ·16 = 19733 and 18568 ·1+142 ·16 = 20840
for the orthogonal and biorthogonal cases respectively; and total bits for QSC was 17813 · 16 = 285008 and
18568 · 16 = 297088 respectively. Thus, the improvement ratio for PMC relative to QSC was ≈ 14.

Figure 1 displays the original and some of the reconstructed images for the orthogonal case. Since the original
image was scanned at 100 dpi adequate for redisplay on video monitors with 72 dpi, the various images appear
granular when laser printed at 300 dpi. This granularity on printing Figure 1 confounds the subjective visual
judgement of lossy compression artifacts. However, when viewed on a video display monitor, the artifacts appeared
as patches or blotches that were either inappropriately lightened or darkened. These artifacts were least noticeable
for PMC with order grouping. This subjective result was consistent with the objective result of minimal distortion
rates Dp for PMC with order grouping relative to the other methods of grouping.

4 DISCUSSION

Parameterized-model coding10 (PMC) was originally introduced as a compression scheme for 1-D signals. It
has been further elaborated here and demonstrated for wavelet packet near-best basis transforms of 2-D signals. In
particular, it has been shown to be a feasible method for the compression of images with minimal visual artifacts
on reconstruction. As measured by the simple estimates calculated in Section 3, a significant improvement in
compression was obtained for PMC relative to quantized-scalar coding (QSC) with a ratio of ≈ 14 for both
orthogonal and biorthogonal test cases. As explained in Section 2.5, compression rates and improvement ratios



   

estimated here reflect information coded from the wavelet packet amplitudes a and not the wavelet packet indices
(l, b, c). Therefore, the comparisons reported here between QSC and the various versions of PMC must be
considered valid only relative to each other within the context of this initial pilot study and not relative to some
external standard requiring actual bit counts for information coded from both amplitudes and indices. Future
research will focus on developing efficient methods for lossless coding of indices in conjunction with lossy coding
of amplitudes. These future experiments will determine the range of compression rates (in terms of bits per pixel
or other standard measures) within which parameterized-model coding is competitive with or superior to existing
methods. However, it is likely that this range will be the very low bit rates most effectively used for coding a
small number of packets with the largest amplitudes thereby minimizing the overhead requirements for coding
the indices of the packets. This condition applies to the cases described in Section 1 of coding the M packets of
a matching pursuit decomposition or the M largest packets of a complete basis decomposition.
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Table 1: Compression Rate R and Distortion Rates Dp for Various Codings of Elaine Image

Coding Orthogonal (DOLA 8) Biorthogonal (BBBS 7,9)
(Grouping) R D1 D2 D∞ R D1 D2 D∞
PMC (none) 12 0.8760 2.4747 33.3320 11 1.3341 3.1428 50.3867
PMC (levels) 47 0.0563 0.1172 5.0625 51 0.0913 0.1543 7.2031
PMC (blocks) 236 0.0549 0.0675 1.1445 351 0.0541 0.0635 1.3203
PMC (order) 120 0.0476 0.0531 0.2188 142 0.0492 0.0555 0.2891
QSC (none) 17813 0.0451 0.0506 0.2227 18568 0.0471 0.0532 0.2969

Figure 1: Original and reconstructed versions of Elaine image following orthogonal near-best basis wavelet packet
transform and lossy compression with parameterized-model coding: upper left – original; upper right – PMC with
levels grouping; lower left – PMC with blocks grouping; lower right – PMC with order grouping.


