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Abstract: Previous simulation experiments for the comparison of wavelet shrinkage de-
noising methods have failed to demonstrate significant differences between methods. Such
differences have never been clearly demonstrated due to the use of qualitative comparisons
or of quantitative comparisons that suffered from insufficient sample size and/or absent
confidence intervals for the figure of merit investigated.

In particular, previous studies have used non-robust measures as figures of merit for fized
signal classes defined by adding instances of noise to the same instance of the fixed test
signal. New simulation experiments are reported here that instead use robust measures
for randomized signal classes defined by adding instances of noise to different instances of
randomized test signals.

Significantly greater variability in the performance of the denoising methods was observed
when comparing results obtained with randomized rather than fixed signal classes. How-
ever, the use of robust measures does facilitate statistically valid comparisons with respect
to this variability. Indeed, the use of non-robust or of non-randomized signal classes can
result in misleading inferences from invalid comparisons. Thus, the combined use of both
should yield more realistic and meaningful simulation results that better represent the
real-world context intended for applied use of the denoising methods.

Keywords: Wavelet-based denoising, wavelet domain thresholding, wavelet shrinkage, noise
removal, non-parametric signal estimation, robust measures.
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1 Introduction

Denoising should not be confused with smoothing. Whereas smoothing removes high frequencies
and retains low frequencies, denoising attempts to remove whatever noise is present and retain
whatever signal is present regardless of the spectral content of the noisy signal. For example,
to denoise music corrupted by noise, the high frequencies of the music should not be eliminated.
Instead, both the treble and the bass should be preserved. Although not demonstrated here (see
elsewhere [9, pp. 99-101] for discussion and references), this example of denoising music offers an
important application of wavelet shrinkage denoising for further investigation.

As developed originally by Donoho et al. [5, 6, 4, 7], wavelet shrinkage denoising is denoising
by shrinking (i.e., nonlinear soft thresholding) coefficients in the wavelet transform domain. It
consists of three steps: 1) a linear forward wavelet transform, 2) a nonlinear shrinkage denoising,
and 3) a linear inverse wavelet transform. Because of the nonlinear shrinking of coefficients in the
transform domain, this procedure is distinct from those denoising methods that are entirely linear.
Moreover, it is considered a non-parametric method. Thus, it is distinct from parametric methods
[17], including both linear and nonlinear regression [8], in which parameters must be estimated

LC. Taswell (ctaswell@toolsmiths.com) is with Computational Toolsmiths, POB 18925, Stanford, CA 94309-8925.



316 C. Taswell

for a particular model that must be assumed a priori. (For example, the most commonly used
parametric method is least squares regression to estimate the parameters a and b in the model
y=azr+b.)

The first Monte Carlo simulation experiment [15, 16] comparing any of the various wavelet
shrinkage denoising procedures was performed by Taswell and published in the article by Donoho
and Johnstone [5, Table 4, page 448; Acknowledgements, page 450]. Various other experiments
have since been performed by other authors (see discussion and references in [7], also [11, 2]).
Most of this work has examined a few well known images (‘Barbara’, ‘Lena’’baboon’, et ¢.) or
the four test signals originally called ‘Doppler’, ‘HeaviSine’, ‘Blocks’, and ‘Bumps’ by Donoho and
Johnstone [5]. The latter was renamed more descriptively as ‘Spires’ by Taswell [18, 22]. All of
the experiments on these test signals, including the most recent experiments on signals [22, 11]
and on images [2], examined only fixed test signals and images rather than defined classes of
randomized test signals and images (or alternatively, classes of real-world signals and images with
many different instances in each class).

To address this deficiency in the design of the simulation experiments, new classes of randomized
test signals are introduced here, and used in new experiments which provide a more appropriate
evaluation of the performance of the denoising methods. For example, instead of using just one
instance of ‘Spires’ with the particular values of the peak height, width, and location parameters
originally defined in [5], multiple instances of ‘Random Spires’ are used in the experiments with
randomized values of the peak height, width, and location parameters. The use of such randomized
signal classes in the simulation experiments results in a more realistic assessment of the variability
of performance that can be expected for the different denoising methods. Some of the results
presented here have previously appeared in the conference paper [20].

2 Methods

2.1 Wavelet Shrinkage Denoising
Assume that the observed data

X|[n] = S[n] + Gn]

contains the true signal S[n] with additive Gaussian noise G[n] as functions in time at sample
points n. Let W(-) and W~!(-) denote the forward and inverse wavelet transform operators. Let
D(-, A) denote the denoising operator with soft threshold A\. We intend to wavelet shrinkage denoise
X[n] in order to recover S[n] as an estimate of S[n]. Then the three steps

Y = W(X)
Z = D))
S = w2

summarize the procedure.
Given threshold \ for data U (in any arbitrary domain — signal, transform, or otherwise), the
rule
DU, \) = sgn(U) max(0, |[U| — \)

defines nonlinear soft thresholding. The operator D nulls all values of U for which |U|] < A and
shrinks toward the origin by an amount A all values of U for which |U| > \. Tt is the latter aspect
that has led to D being called the shrinkage operator in addition to the soft thresholding operator.

To determine A, let’s say that the data has sample size or length N if it has been sampled at N
time points n; such that X; = X[n;]. Then for an orthogonal W, there will also be N transform
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coefficients Yj. If we prefer to use a threshold (such as the minimax threshold or the universal
threshold [5]) that depends only on N, then A can be predetermined and we can use the three-step
denoising procedure already described. However, if we prefer to use a data-adaptive threshold

A = d(U)

(such as the threshold selected by Stein’s unbiased risk estimator (SURE) [6]) that depends not
just on N but on U (which again represents the data in any generic domain), then we must use a
four-step procedure

Y = W(X)
A o= dY)
Z = D(V,))
S = w2

for wavelet shrinkage denoising. Note the distinction between the operator d(-) that selects the
threshold and the operator D(-,-) that performs the thresholding.

Implementation of YW will not be reviewed here. See elsewhere [3, 12, 10] for comprehensive
reviews of algorithms and applications, [14] for a comparative analysis of implementations, and
[24] for an explicit example with detailed pseudocode and available code. Recall, however, that
a wavelet transform must be specified by its analysis and synthesis wavelet filter banks, single-
level convolutions and boundary treatment, and the total number L of iterated multiresolution
levels [19]. The filter banks that are used in each iteration are especially important and must
be specified clearly and verified empirically [23]. Thus, we can generate many different kinds of
wavelet shrinkage denoising procedures simply by combining any of the many different choices for
W(-) with any of the possible choices for d(-). If we let D denote more generally either the soft
thresholding operator Dy or the hard thresholding operator Dy, [5], then by combining choices for
W(-), D(-,-), and d(-), we can generate even more different kinds of wavelet-based denoising.

Denoising by thresholding in the wavelet domain has been developed principally by Donoho
et al. [5, 6, 4, 7]. In [5], they introduced RiskShrink with the minimax threshold, VisuShrink
with the universal threshold, and discussed both hard and soft thresholds in a general context
that included ideal denoising in both the wavelet and Fourier domains. In [6], they introduced
SureShrink with the SURE threshold, WaveJS with the James-Stein threshold, and LPJS also
with the James-Stein threshold but in the Fourier domain instead of the wavelet domain. The
procedure LPJS was renamed FourJS (analogous to WaveJS) for consistency of mnemonics by
Taswell [22], who also labelled the various denoising procedures respectively ‘RIS’, ‘VIS’, TWD’,
‘IFD’, ‘SUR’, ‘WJS’, and ‘FJS’ for use as abbreviations.

These procedures can be classified by transform domain, Fourier versus wavelet, as well as by
intent of use, ideal versus practical. An ideal procedure requires a priori knowledge of the noise,
whereas a practical procedure does not, so that ideal procedures are only used for purposes of
comparison in simulation experiments. Moreover, the procedures can be classified according to
whether they use a single threshold globally for all relevant parts of the transform, or multiple
thresholds locally for different parts of the transform (Fourier frequency bands or wavelet multires-
olution levels). For example, ‘VisuShrink’ (‘VIS’) is a practical, wavelet domain, global threshold
procedure in which A =+/2log N is used for all levels [ = 1,..., L from fine to coarse. As another
example, ‘SureShrink’ (‘SUR’) is also a practical wavelet procedure but it uses a local threshold A,
estimated adaptively for each level [.

Wavelet shrinkage denoising results reported here were generated with Version 4.6¢l of the
WHYBX Software Library [18] using orthogonal discrete wavelet transforms and wavelet filters
from the systematized collection of Daubechies wavelets [21], in particular, DROLA(10;5).
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2.2 Simulation Experiments

Randomized signal classes, called ‘Random Blocks’, ‘Random Spires’, and ‘Random HeaviSine’,
were defined to generate signals analogous to the original ‘Blocks’, ‘Spires’, and ‘HeaviSine’. Fig-
ure 1 displays the original nonrandomized versions in the top row of subplots, and one instance
each of the randomized versions in the bottom row of subplots. Table 1 lists the mathematical
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Figure 1: Standardized Test Signals.

formulae for the test signal classes. These formulae are valid for both the randomized and orig-

Table 1: Mathematical Formulae for Signal Classes

Name Function Kernel Parameters

Blocks 7O = S K (¢ — p) K(s) = (sgn(s) + /2 M, hypm

Spires ORS w K((t—pmvwm) K(s)= (sl + 1" M, b, Dyt
HeaviSine  f(t) = hy sin(p17t) + Em o hin K (t — p) K(s) = sgn(s) M, hpn, pm

inal nonrandomized versions with the appropriate choice of parameters. Table 2 lists the set of
fixed parameters used for the original nonrandomized signal classes. Table 3 lists the MATLAB
pseudocode expressions for the set of parameters chosen for the randomized classes used in the
experiments reported here.
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Instances of randomized signals were generated from the signal classes, corrupted with additive
Gaussian noise with a signal-to-noise ratio SNR = 10, and then denoised with each of the various
denoising methods. Performance of the denoising procedures on the signal classes was studied
as a function of signal length N = 27 over T trials of the simulation. Several criteria, including
the SNR and the ¢!, ¢, and £ norms, were used as objective figures of merit for comparing the
original signal Sy[n] with the denoised estimate S;[n] in the # trial. Results were averaged over
signal instances for all trials ¢t = 1,...,T in each signal class and reported with means, standard
deviations, and coefficients of variation. SNR was computed as

Yoy [Silrn]®
Soney [Sen] — Si[n][?

in decibels (dB). For each figure of merit in each trial, the rank order of the various denoising
procedures as determined by that figure of merit was computed and then averaged over all trials.
Table 4 summarizes the basic design parameters for the Monte Carlo simulation experiments used
for all signal classes and denoising procedures.

SNR(S;, S;) = 101log;,

3 Results

As expected, the coefficients of variation (ratios of standard deviation to mean) were observed to
be significantly larger for the randomized signal classes when compared with the original fixed signal
classes. Table 5 displays an example with ‘VIS’ that demonstrates an increase of approximately 2
— 10 fold for SNR values. Analogous results with increased coefficients of variation for SNR values
were also observed for the other methods with the amount of increase dependent upon signal class,
signal length, and denoising procedure. However, Table 6 displays an example with ‘SUR’ that
demonstrates greater robustness, i.e.,, less difference between fixed and random signal classes,
when SNR ranks instead of SNR. values were used in the comparison. Nevertheless, in most cases,
the random signal classes manifested greater variability than the fixed signal classes.

Continuing the ‘SUR’ example, Tables 7 and 8 present the SNR, values and ranks with results
expressed as the mean +1 standard deviation from all trials. Recall that SNR values are reported
in dB while SNR ranks are reported in the interval [1, 7] because there were seven different denoising
procedures tested and then ranked with 1 assigned to the worst (with the lowest SNR dB value)
and 7 to the best (with the highest SNR dB value). Note again the greater differences between
fixed and random classes with the use of SNR, values versus ranks.

Figures 2 and 3 plot curves with results, respectively, for the SNR values and ranks for all
seven denoising procedures as functions of J = log, N with each point and error bar corresponding
to the mean +1 standard deviation from all trials. Large differences between fixed and random
classes necessarily impact the statistical validity of comparisons of the denoising procedures. For
example, in Figure 2 when comparing performance by SNR values of the methods on the signal
classes, the error bars do not overlap for ‘Blocks’ but do overlap for ‘Random Blocks’, implying that
any differences between the methods are not statistically significant for this randomized signal class
under the experimental conditions investigated. However, in Figure 3 when comparing performance
by SNR ranks, the error bars for ‘VIS’ and ‘SUR’ do not overlap for ‘Random Blocks’, implying
that in this case the method ‘VIS’ does perform significantly worse than the method ‘SUR’.

Assuming that the randomized classes are a more appropriate simulation of real-world situations
and data, then the following results can be summarized from inspection of the bottom row subplots
in Figure 3: As expected by theory, ideal wavelet denoising (‘IWD’) performed best. Of the non-
ideal or practical procedures investigated, VisuShrink (‘VIS’) and SureShrink (‘SUR’) performed,
respectively, worst and best in the majority of cases studied (i.e.,for the various signal classes and
lengths).
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Table 2: Values for Fixed Parameters Used in Nonrandomized Versions
Name Parameter Value
Blocks M 11
hom, 4,-5,3,-4,5,—-4.2,2.1,4.3,-3.1,2.1,—4.2
DPm .1,.13, .15, .23, .25, .40, .44, .65, .76, .78, .81
Spires M 11
hom 4,5,3,4,5,4.2,2.1,4.3,3.1,5.1,4.2
DPm 1, .13, .15, .23, .25, .40, .44, .65, .76, .78, .81
Wiy .005, .005, .006, .01, .01, .03, .01, .01, .005, .008, .005
HeaviSine M 3
hon 4,-1,1
Pm 4, .3,.72
Table 3: Pseudocode Expressions for Parameters Used in Randomized Versions
Name hm Pm W, m
Blocks 5*sign(rand(1,11)-0.5).*rand(1,11)  sort(rand(1,11)) 1,...,11
Spires 5*rand(1,11) sort(rand(1,11))  0.05*rand(1,11) 1,...,11
HeaviSine 4 4 1
2*sign(rand(1,2)-0.5).*rand(1,2) sort(rand(1,2)) 2,3
Table 4: Simulation Experiment Design Parameters
T N J L
100 256 8 3
100 512 9 4
100 1024 10 5
80 2048 11 6
40 4096 12 7
20 8192 13 8
10 16384 14 9
Table 5: VIS Denoising: Coefficients of Variation for SNR Values.
Blocks Spires HeaviSine
J Fixed Random Fixed Random Fixed Random
8 | 2.8501e-002 1.1718e-001 | 7.9789e-002 1.0950e-001 | 5.2748e-002 6.5265e-002
9 | 3.4988e-002 1.3192e-001 | 5.5483e-002 8.5289e-002 | 3.5886e-002 5.7628e-002
10 | 2.3885e-002 1.3916e-001 | 3.5810e-002 7.8460e-002 | 3.0110e-002  6.2710e-002
11 | 1.8842e-002 1.4474e-001 | 1.9456e-002 5.7327e-002 | 2.3419e-002  6.8886e-002
12 | 1.5847e-002 1.2818e-001 | 1.6622e-002 5.0351e-002 | 2.4020e-002  5.3679e-002
13 | 1.0527e-002 8.9286e-002 | 1.0516e-002 4.1403e-002 | 1.2165e-002  7.0534e-002
14 | 6.7975e-003 1.1607e-001 | 7.8823e-003 5.1193e-002 | 1.4964e-002 1.1089e-001
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Table 6: SUR Denoising: Coefficients of Variation for SNR Ranks.

Blocks

Fixed

Random

Spires

Fixed

Random

HeaviSine

Fixed

Random

10
11
12
13
14

2.4330e-001
2.8785e-001
2.1884e-001
2.4530e-001
8.4628e-002
9.3271e-002

0

J Fixed

3.1641e-001
3.4927e-001
3.5904e-001
2.8633e-001
2.2624e-001
2.0194e-001
9.3598e-002

3.8317e-001
8.9728e-002
9.1179e-002
2.6295e-002

0
3.7581e-002

0

4.1271e-001
2.3793e-001
1.9156e-001
1.4172e-001
1.1720e-001
7.0757e-002

0

2.3139e-001
2.3570e-001
2.2765e-001
1.9139e-001
1.3020e-001
3.7581e-002

0

Table 7: SUR Denoising: SNR Values in dB.

Blocks

Random

Spires

Fixed

Random

2.1446e-001
2.4149e-001
2.1524e-001
1.8090e-001
1.7733e-001
6.2624e-002

0

HeaviSine

Fixed

Random

8 | 11.84+0.74

9 | 13.9£0.74
10 | 15.7£0.33
11 | 17.1£0.44
12 | 19.1£0.26
13 | 20.9£0.47
14 | 23.1+£0.24

14.8+1.54
16.9+1.72
18.7£1.98
20.8£1.89
22.9+1.76
24.8+1.44
26.9+0.90

10.7£1.34
12.8+0.47
14.24+0.51
16.7+0.27
19.040.23
21.6+0.54
24.14+0.19

12.3+0.91
14.6+0.99
16.8+0.96
19.1+0.86
21.4+0.82
23.8+0.84
26.5+£0.97

18.4+0.99
20.5£0.76
22.7£0.75
24.7£0.69
27.0£0.85
28.9+0.44
30.6£0.57

Table 8: SUR Denoising: SNR Ranks € [1,7].

Blocks

Fixed

Random

Spires

Fixed

Random

18.1+0.96
20.5£1.13
22.2+1.38
24.2+1.49
26.3+1.42
28.4+1.77
31.4+1.73

HeaviSine

Fixed

Random

10
11
12
13
14

2.30£0.56
3.27+0.94
3.61£0.79
3.83+£0.94
4.934+0.42
5.50£0.51
6.00£0.00

2.48+0.78
2.69£0.94
3.16£1.13
4.084+1.17
4.484+1.01
5.15+1.04
5.90£0.32

3.944+1.51
5.56£0.50
5.40+0.49
5.98+0.16
6.00£0.00
5.95+0.22
6.00£0.00

3.39+1.40
4.4941.07
4.71£0.90
5.50£0.78
5.65+0.66
5.80£0.41
6.00£0.00

3.98+0.92
4.00+0.94
4.24+0.97
4.484+0.86
5.50£0.72
5.95+0.22
6.00£0.00

4.1440.89
4.46+1.08
4.844+1.04
4.91+0.89
5.33£0.94
5.85+0.37
6.00£0.00

321
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Error of Denoised Test Signals (Varying L = max, E = SNR2)

Blocks Spires HeaviSine

10 12

Random Blocks Random Spires Random HeaviSine

SUR

8 10 12 14 8 10 12 14 8 10 12 14

Figure 2: SNR Values in dB for Denoised Test Signals: O, IFD; x, IWD; «, FJS; >, WIJS; A, RIS;
v, VIS; o, SUR.
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Error Rank of Denoised Test Signals (Varying L = max, E = SNR2)

Blocks Spires HeaviSine
7 7 7
6 6 6 9
5 5 5
4 44 4 /é
311 3 3
2ff 2 2 :
1 1 1
8 10 12 14 8 10 12 14 8 10 12 14
Random Blocks Random Spires Random HeaviSine
71 7 7
6 6 6
5 5 5
4 4H L 4
3 3 § >\*E>/'/‘%\‘E 3
2 2 A 2
1 1 1
8 10 12 14 8 10 12 14

Figure 3: SNR Ranks € [1,7] for Denoised Test Signals: O, IFD; x, IWD; «, FJS; >, WIS; A, RIS;
v, VIS; o, SUR.
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4 Discussion

Monte Carlo simulation experiments have been performed previously [5, 7, 1, 22, 13, 25, 2, 11]
in an effort to compare various wavelet-based denoising procedures. Typically, these experiments
have involved taking real signals or generating synthetic signals, adding known amounts of noise,
and then comparing the effectiveness with which various denoising procedures remove the noise.
Unfortunately, the statistical significance of any differences between the various methods has never
been clearly demonstrated due to the use of qualitative comparisons by human subjective opinion
or of quantitative comparisons that suffered from insufficient sample size (i.e., limited number of
distinct test signals in the defined class) and/or absent confidence intervals (i.e., without implicit
or explicit hypothesis testing) for the figure of merit investigated.

In one of the few studies that reported actual statistical test results, Wachowiak et al. [25]
clearly stated: “Paired Student’s t-tests failed to show significant differences among the denoising
techniques with respect to any merit measure. .. performance was quantified on the basis of the
averaged merit measure.” However, the results reported here in Section 3 with the new randomized
signal classes defined in Section 2.2 demonstrate that the use of averaged merit measures may be
inadequate to identify differences between denoising procedures. On the contrary, the use of more
robust measures, such as the figure of merit’s rank instead of the figure of merit itself, can more
definitively establish significant differences as demonstrated by the results displayed in Figure 3
for the SNR ranks versus those in Figure 2 for the SNR values.

The use of both robust measures and randomized signal classes have been introduced here
to facilitate the statistically valid comparison of the performance of wavelet shrinkage denoising
methods. Use of non-robust measures or of non-randomized signal classes can result in misleading
inferences from invalid comparisons. Careful attention should be focused on the use of appropriately
defined measures and signal classes when evaluating denoising methods in simulation experiments.
These experiments can then be used to compare the performance of various denoising methods
assuming, of course, that the design parameters for both the randomized signal class and for the
simulation experiment appropriately represent both the situation and the data in the real-world
context intended for applied use of the denoising methods.

When there is no statistically significant difference in the methods’ performance on the de-
fined signal class for the specified experimental conditions, other criteria such as computational
complexity should be used to select a preferred method. Moreover, if a particular method can be
demonstrated to perform significantly worse than other competing methods, such as shown here
for VisuShrink, it would be prudent to exclude it from further consideration for use as a denoising
method for the signal class and experimental conditions investigated.
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