
  

Length-Preserving Wavelet Transform Algorithms

for Zero-Padded and Linearly-Extended Signals
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ABSTRACT

Since the wavelet transform is defined for infinite-length signals, finite-length signals must

be extended before they can be transformed. Common extension methods include periodic

or mirror-image replication, zero padding, and linear extrapolation. Zero-padding and linear

extrapolation have the advantage that they are free of wrap-around and reflection problems,

but they yield transform vectors that are longer than the signal vector. In this paper we show

that these transform vectors can be truncated to the length of the signal vector without loss

of information. This results in an invertible, length-preserving transform for zero-padded and

linearly extrapolated signals. The computation of the zero-padded transform is discussed in

detail and is illustrated by a practical pseudocode routine.
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I. INTRODUCTION

The wavelet transform maps a signal into a domain that is midway between the time and

frequency domains [1]-[5]. This paper is concerned with wavelet transforms of finite-length

signals, using the compactly supported orthogonal wavelet functions of Daubechies [1], [2].

Since the wavelet transform is defined for infinite-length signals, finite-length signals

must be extended in some way before they can be transformed. Common extension methods

include periodic replication (as in the fast fourier transform), mirror-image replication [4],

zero padding, and linear extrapolation. Periodic replication and zero padding are appropriate

for signals that begin and end on the baseline, while mirror-image replication and linear

extrapolation provide continuity at the boundaries for signals that do not begin or end on

the baseline.

Zero padding and linear extrapolation are natural extension methods for many types

of signals. They make minimal assumptions about the behavior of the signal beyond the

boundaries, so that the transform coefficients describe only the detail in the signal itself.

Periodic and mirror-image replication, on the other hand, either wrap around or reflect

signal detail into the region beyond the boundaries, and this can distort the interpretation

of the transform coefficients near the boundaries [6].

An important drawback of zero padding, however, is that it results in a non-length-

preserving transform, that is, one in which the transform vector is longer than the signal

vector [6]. This is undesirable both because of the increased memory requirements and also

because of the existence of a null space of the inverse transform, so that large perturbations

in the transform space are not necessarily reflected by large perturbations in the signal space.

Periodizing and mirroring do yield length-preserving transforms.

In this paper we present a length-preserving transform for zero-padded signals. Specifi-

cally, we show that the full transform of a zero-padded length-n signal can be truncated to n

coefficients from which the signal can be exactly reconstructed. A practical transform algo-

rithm based on an efficient method of restoring the full transform vector from the truncated

transform vector is given in pseudo matlab code in the appendix.

We also consider a more general class of signal extensions consisting of a fixed component
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and a component that depends linearly on the signal coefficients. This class includes linear

extrapolation. We show that the transforms of signals with these types of extensions can

also be truncated to length n without loss of information.

II. INFINITE-LENGTH WAVELET TRANSFORM

This section presents a matrix formulation of the infinite-length wavelet transform to

serve as a framework for the finite-length case. The following notational conventions are

used throughout this paper. Infinite-length vectors and matrices with infinitely many rows

or columns are indicated by tildes: x̃, Ã. Ranges of indices in subvectors and submatrices

are often indicated symbolically: thus if c = [0 : n − 1] then x̃c ≡ x̃0:n−1. Finite-length

subvectors are also written without the tilde and with the subscript italicized: thus xc ≡ x̃c.

Iteration levels are indicated by superscripts: Ak, and transposes of superscripted matrices

are written either (Ak)T or AkT .

The Kth-level wavelet transform of an infinite-length signal x̃ = [. . . , x−1, x0, x1, . . .]
T

consists of the detail coefficients d̃k, k = 1, . . . , K, and the approximation coefficients ãK .

These coefficients are computed by the forward recursions

ãk = Ĩ↓L̃ãk−1, d̃k = Ĩ↓H̃ãk−1, k = 1, . . . , K, (1)

and the original signal can be recovered via the inverse recursion

ãk−1 = L̃T Ĩ↑ã
k + H̃T Ĩ↑d̃

k, k = K, . . . , 1, (2)

where ã0 ≡ x̃, L̃ and H̃ are low- and high-pass filter matrices, and Ĩ↓ and Ĩ↑ are compression

and dilation matrices. The filter matrices L̃ and H̃ are toeplitz matrices whose rows are

the impulse responses of complementary low-pass and high-pass filters, respectively. In this

paper we will use the compactly supported orthogonal wavelets of Daubechies [1], [2], for

which the impulse responses have finite length with an even number N of coefficients. For a

basis with low-pass coefficients l1, . . . , lN , the matrices are given by

L̃i,j =

{
lj−i+N/2+1, if −N/2 ≤ j − i < N/2,

0, otherwise,
(3)
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H̃i,j =

{
hj−i+N/2, if −N/2 − 1 ≤ j − i < N/2 − 1,

0, otherwise,
(4)

where hi = (−1)ilN−i+1. The compression and dilation matrices Ĩ↓ and Ĩ↑ are defined as

follows:

(Ĩ↓)i,j = (Ĩ↑)
T
i,j = δ2i−j (5)

where δi = 1 if i = 0 and 0 otherwise. So, for example, for N = 4, the combined filtering

and compression operators are as follows:

Ĩ↓L̃ =
(
L̃T Ĩ↑

)T
=




. . .

. . . l3 l2 l1
l4 l3 l2 l1

l4 l3 l2 l1
l4 l3 l2 . . .

. . .



, (6)

Ĩ↓H̃ =
(
H̃T Ĩ↑

)T
=




. . .

. . . h3 h2 h1

h4 h3 h2 h1

h4 h3 h2 h1

h4 h3 h2 . . .
. . .



, (7)

where the leftmost, uppermost element shown in each matrix is the 0, 0 element.

In the analysis to follow, it will be convenient to combine the approximation and detail

coefficients into a single combined transform vector and to write the forward and inverse

transform recursions as single matrix-vector products. Thus we will write the forward recur-

sion as:

x̃k = Ãk−1x̃k−1, k = 1, . . . , K, (8)

and the inverse recurion as:

x̃k−1 = (Ãk−1)T x̃k, k = K, . . . , 1, (9)

where x̃k is the combined transform vector and Ãk is the combined transform matrix.
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The zero-level combined transform matrix Ã0 is formed by interleaving the rows of L̃

and H̃:

Ã0
i,: =

{ L̃i,: if i is even

H̃i−1,: if i is odd
(10)

The higher-level combined transform matrices have elements from L̃ and H̃ only in the rows

and columns that pertain to the kth-level approximation coefficients, and elements of the

identity elsewhere to pass the detail coefficients without modification:

Ãk
i,j =




Ã0
i/2k,j/2k

if i and j are multiples of 2k,

δi−j otherwise.
(11)

Thus for N = 4, the first two combined transform matrices are

Ã0 =




. . .

. . . l3 l2 l1

. . . h3 h2 h1

l4 l3 l2 l1
h4 h3 h2 h1

l4 l3 l2 l1
h4 h3 h2 h1

l4 l3 l2 . . .

h4 h3 h2 . . .
. . .




(12)

Ã1 =




. . .

. . . l3 l2 l1
1

. . . h3 h2 h1

1

l4 l3 l2 . . .

1

h4 h3 h2 . . .

1
. . .




(13)

Defining the combined transform matrices in this way yields a combined transform vector
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whose approximation and detail coefficients are interleaved in the following manner:

x̃k ≡ [. . . , ak0, d
1
0, d

2
0, d

1
1, d

3
0, d

1
2, d

2
1, d

1
3, d

4
0 . . .]

T , (14)

where specifically

x̃ki =




dpj if i = j2p + 2p−1, p = 1, . . . , k,

akj if i = j2k,
(15)

and x̃0 = x̃.

We remark that a family of slightly different transforms can be obtained by time-shifting

the low-pass or high-pass rows of Ã0 or by interchanging the low-pass and high-pass rows

in one or more of the Ãks. For the finite-length algorithms in the next section, the best

numerical conditioning is achieved when the largest elements in each row fall closest to the

diagonal. Thus the Ã0 specified by Eq. (11) is appropriate for the “closest-to-linear-phase”

wavelets of [2], while for the asymmetrical wavelets of [1] the low-pass rows should be shifted

to the left, and the high-pass rows to the right, by about N/2 − 3 places in order to place

the largest element in each row on the diagonal.

III. ALGORITHMS FOR ZERO-PADDED SIGNALS

Now consider a finite-length signal x = [x0, . . . , xn−1]
T . This section will consider the

wavelet transform x̃K of the zero-padded signal x̃ = [. . . , 0, x0, . . . , xn−1, 0, . . .]
T . Because of

the finite support of the rows of the Ãks, x̃K will have only only a finite number of non-zero

coefficients, although in general this number will be greater than n. We will first give an

explicit algorithm for computing the full non-zero transform vector, and then show that this

vector can be truncated to length n without loss of information.

A. Length-Extending Algorithm

The actual support of the transform vector x̃k depends on n, N , and k in a complicated

way, but inspection shows that it is always contained in the interval ek ≡ [−2km : n +

r + 2km − 1], where r = 2K�n/2K� − n rounds n up to an integer multiple of 2K , and

m = (N/2 − 1) is the number of additional coefficients added at each end of the transform
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vector per level k for large k. In fact, this interval is a tight bound on the support at all

but the first few levels. (Note, however, that a different expression for ek might be needed

if using one of the transform variations described at the end of Section II).

The following algorithm, then, computes x̃K
eK

(≡ xK
e ), which we call the “extended”

transform vector. It is simply a restatement of Eqs. (8) and (9) for the intervals ek. A

practical implementation is given in the appendix. Note that in that implementation, the

matrices Ãk−1
ek,ek−1 are never actually constructed. Rather the products Ãk−1

ek,ek−1x
k−1
e are

computed by convolution.

Function y = LEWT (x, l, K, direction)

if direction = “forward”

x0
e = [01:m; x; 01:m]

for k = 1 : K

xk
e = Ãk−1

ek,ek−1x
k−1
e

end

y = xK
e

elseif direction = “inverse”

xK
e = x

for k = K : −1 : 1

xk−1
e = (Ãk−1

ek,ek−1)
Txk

e

end

y = [x0
e]m+1:m+n

end

B. Length-Preserving Algorithm

The extended transform vector xK
e has ≈ n+ 2(K + 1)m non-zero coefficients, but only

n degrees of freedom. Therefore some of its coefficients must be redundant. It turns out that

the n central coefficients x̃K
c (≡ xK

c ), where c = [0, . . . , n − 1], contain all the information

needed to reconstruct the full vector xK
e . In particular, we will show in the next section that

for each level k there exist an (n+ r + 2k+1m)× n matrix Pk and an n× n matrix Ak such
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that

xk
e = Pkxk

c , (16)

xk
c = Ak−1xk−1

c . (17)

Thus x and xK
c can be considered to be an invertible, equal-length transform pair.

The following algorithm computes the length-preserving transform by truncating the length-

extending transform, and then restores the length-extending transform using the matrix PK .

A practical implementation is given in the appendix. The matrix PK depends on l and K.

Its computation is discussed in the following sections. Note that in many applications, PK

can be precomputed and stored in a lookup table.

Function y = LPWT (x, l, K, direction)

if direction = “forward”

xK
e = LEWT (x, l, K, “forward”)

y =
[
xK
e

]
2K+1m+1:2K+1m+n

elseif direction = “inverse”

xK
e = PKx

y = LEWT (xK
e , l, K, “inverse”)

end

C. General Formulas for P and A

General formulas for Pk and Ak can be found by induction. At level k = 0, xk
e is

obtained by simply padding x with zeros, so that

P0 =



n
0

I

0


m

n

r + m

(18)

For k ≥ 0, the non-zero coefficients of x̃k+1 are given by

xk+1
e = Ãk

ek+1, ekx
k
e = Ãk

ek+1, ekP
kxk

c (19)
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and the central coefficients of x̃k+1 are given by

xk+1
c = Ãk

c, ekP
kxk

c (20)

Thus, comparing with Eq. (17) we have

Ak = Ãk
c,ekP

k (21)

Inverting Eq. (20) to express xk
c in terms of xk+1

c , and substituting back into Eq. (19) yields

the following expression for Pk+1:

Pk+1 = Ãk
ek+1,ekP

k(Ak)−1 (22)

Equations (21) and (22) are valid for all values of N and n, but they are not practical

computationally for large n since they involve matrices of size n× n and larger.

D. Efficient Formulas for P and A

More efficient formulas for Ak and Pk can be derived by exploiting the block-toeplitz

structure of Ãk. Ãk is made up of blocks of size 2km̄× 2km̄, where m̄ ≡ 2	N/4
. Note that

m̄ is the same as m (the number of additional redundant coefficients on each side per level)

for odd values of N/2, but is one greater than m for even values of N/2. In order to have an

integer number of blocks for all levels 1, . . . , K, we will assume in this section that n is an

integer multiple of 2Km̄ (which also means that the roundup constant r is zero), and we will

redefine the extended interval e in terms of m̄ instead of m: i.e., ēk ≡ [−2km̄ : n+2km̄− 1].

Under these assumptions, the matrices Ãk
c,c and Ãk

ēk+1,ēk
can both be evenly partitioned

into square blocks of size 2km̄× 2km̄:

Ãk
c,c =




n︷ ︸︸ ︷
Ck Bk

Dk Ck . . .

. . . . . . Bk

Dk Ck







n (23)
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Ãk
ēk+1,ēk

=




2km̄
n︷ ︸︸ ︷ 2km̄

Bk

Ck Bk

Dk Ck . . .

Dk . . . Bk

. . . Ck

Dk




2km̄

2km̄
n

2km̄

2km̄

(24)

where the sizes shown indicate elements, not blocks, and Ck = Ãk
0:2km̄−1, 0:2km̄−1

, etc. For

example, the zeroth-level blocks for N = 4 are:

B0 =

[
l1 0

h1 0

]
, C0 =

[
l3 l2
h3 h2

]
, D0 =

[
0 l4
0 h4

]
, (25)

and for N = 6 they are:

B0 =

[
l2 l1
h2 h1

]
, C0 =

[
l4 l3
h4 h3

]
, D0 =

[
l6 l5
h6 h5

]
. (26)

Notice from Eq. (24) that Ãk
ēk+1,ēk

consists of a central n× n portion (Ãk
c,c), an additional

block column on the left and right corresponding to the redundant coefficients of x̃k, and two

additional block rows on the top and bottom corresponding to the redundant coefficients of

x̃k+1.

We will now show by induction that Pk has the following block structure

Pk =




n︷ ︸︸ ︷
Sk 0 · · ·
I 0

. . .

0 I

· · · 0 −SkT




2km̄
n

2km̄

(27)

where each block is again 2km̄ × 2km̄. This is clearly the case for k = 0, with Sk = 0.
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Substituting the above equations into Eq. (21) yields the following equation for Ak:

Ak = Ãk
c,c + diag

(
DkSk, 0, . . . , 0, −BkSkT

)
. (28)

Thus only 2km̄ coefficients at either end of the central interval are affected by the end effects.

The inverse of Ak is given as follows:

(Ak)−1 = diag
(
(Ek)−1, I, . . . , I, (Fk)−1

)
(Ãk

c,c)
T , (29)

where Ek = CkTCk + DkTDk + CkTDkSk and Fk = CkTCk + BkTBk − CkTBkSkT .

Equation (29) can be verified by postmultiplying it by Eq. (23) and making use of the

identities BTB + CTC + DTD = I and BTC + CTD = BTD = 0, which follow from the

fact that ÃT Ã = Ĩ.

Substitution into Eq. (22) gives the following update formula for S:

Sk+1 =

[
BkSk

CkSk + Bk

]
(Ek)−1 [CkT DkT ] . (30)

Note that Sk+1 has size 2k+1m̄× 2k+1m̄. To show that Pk+1 has the structure of Eq. (27),

i.e., that the submatrix in the lower right is the negative transpose of the submatrix in the

upper left, we must also show that

−S(k+1)T =

[
−CkSkT + Dk

−DkSkT

]
(Fk)−1 [BkT CkT ] . (31)

This can be shown as follows. Let H = S + C−1B = S − DTC−T . Then it follows

that HE = FTH, which can be verified by multiplying out and applying the orthogonality

identities. Therefore, F−TH = HE−1 as well. Premultiplying both sides of this equation by

[B C]T and postmultiplying by
[
CT DT

]
yields an equation whose left-hand side can be

shown to equal the right-hand side of Eq. (31), and whose right-hand side can be shown to

equal the negative transpose of the right-hand side of Eq. (30).
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IV. ALGORITHMS FOR GENERAL SIGNAL EXTENSIONS

In this section we will consider the transform of signals extended via the following general

linear model:

x̃0 = P̃0x + ũ0. (32)

Here x is the length-n signal to be extended, x̃0 is the extended signal, ũ0 is a known

infinite-length vector that can be used to model fixed extensions, such as a-priori-known

initial and final d.c. levels, and P̃0 is a known ∞×n matrix that can be used to model data-

dependent extensions, such as providing continuity of the signal and/or its derivatives across

the boundaries. For example, linear extrapolation based on the last two signal coefficients

would be modelled by having ũ0
n:∞ = 0̃ and

P̃0
n:∞, : =




0 . . . 0 −1 2

0 . . . 0 −2 3

0 . . . 0 −3 4
...

...
...

...


 (33)

Note that this general framework also allows linear extensions whose slope and offset depend

on a weighted sum of several signal coefficients (in case the true values are obscured by

noise), as well as higher-order polynomial extensions that match higher-order derivatives.

We will again show that the infinite-length transform at level k can be computed from

its n central coefficients:

x̃k = P̃kx̃k
c + ũk. (34)

Assume that Eq. (34) is true for level k. Then from Eq. (8), we have

x̃k+1 = ÃkP̃kx̃k
c + Ãkũk (35)

Selecting the central elements of x̃k+1 and solving for x̃k
c yields:

x̃k
c = (Ãk

c,:P̃
k)−1(x̃k+1

c − Ãk
c,:ũ

k) (36)

as long as Ãk
c,:P̃

k (which, note, is n × n) is non-singular. Substituting this result back in
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Eq. (35) allows us to write the update formulas for P̃k and ũk:

P̃k+1 = ÃkP̃k(Ãk
c,:P̃

k)−1 (37)

ũk+1 =
(
Ãk − ÃkP̃k(Ãk

c,:P̃
k)−1Ãk

c,:

)
ũk (38)

Computational details depend on the particular extensions. If the initial (final) extension

depends on at most the first (last) m elements of x, then the rows of P̃k before −2km and

after r + 2km (which are zero in the zero-padded case) are given by the corresponding rows

of Ãk−1 · · · Ã0P̃0 and can often be expressed by a simple formula. If this is the case, then

the computational requirements for finding P̃k are not much greater than in the zero-padded

case. However, there is no guarantee that for any particular set of extensions Ãk
c,:P̃

k will

be well conditioned or even non-singular. If Ãk
c,:P̃

k is ill conditioned, it may be desirable

to use a different set of n coefficients of x̃k, rather than the central ones, that convey the

information of the original signal more clearly.

V. DISCUSSION

Many signals, by their very nature, begin and end on a zero baseline. The natural way

to extend these signals is by zero padding. Unfortunately, the transform of a zero-padded

length-n signal has more than n non-zero coefficients, the extra ones corresponding to basis

functions that overlap the boundaries from the outside. We have shown in this paper that

these peripheral transform coefficients are redundant, and that only the n central transform

coefficients are needed to exactly reconstruct the original signal. Thus the signal and the

central transform coefficients can be considered an invertible, length-preserving transform

pair.

Zero padding is preferable to periodic replication in many applications because it avoids

wrap-around problems with little increase in computational cost. (In this way wavelet anal-

ysis is different from fourier analysis, in which periodic replication is necessary due to the

periodic nature of the basis functions. Note also that in fourier analysis the term “zero

padding” refers to extending the signal with a finite (rather than an infinite) number of
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zeros.) Periodic replication does retain a certain attractiveness in wavelet analysis, however,

due to its computational simplicity and its convenient analytical properties (the transform

matrix A becomes circulant).

For signals that do not begin or end on the baseline, the appropriate methods of exten-

sion are mirroring or extrapolation, in order to prevent discontinuities at the boundaries.

The relative advantages and disadvantages of extrapolation versus mirroring are less clear

than those of zero padding versus periodizing. Mirroring will remain appropriate in many

applications because of its simplicity, while extrapolation can be considered in applications in

which it is important to minimize reflected signal detail or to avoid discontinuous derivatives

at the boundaries. Extrapolation is further complicated by the need to choose a window

over which to average the extrapolation parameters, while mirroring handles noisiness in

boundary d.c. levels automatically.

In the appendix we present practical implementations of the algorithms LPWT, which

computes the length-preserving zero-padded transform, and LEWT, which computes the

length-extending transform (including redundant coefficients). The major difference these

two algorithms is the tradeoff between computation and storage. LEWT requires 2nN

operations in either direction. LPWT also requires 2nN operations in the forward direction,

but it requires an additional ≈ K2N2/2 operations in the inverse direction (not counting the

precomputation of S). On the other hand, the LPWT transform vector has length n, while

the LEWT transform vector contains an additional ≈ KN redundant coefficients. Thus in

applications with no storage constraints, LEWT might be prefered for its simplicity, while

in applications in which storage is expensive, LPWT might be preferred for its parsimony.

LPWT would also be preferred to LEWT in applications in which signals are to be

compared in the transform domain. For each signal vector x, there are a multiplicity of

vectors y for which LEWT−1(y) = x. (Only one of them is actually the non-zero part of the

infinite-length transform of the zero-padded signal; the others are transforms of signals that

match x over the analysis interval but are not identically zero outside. Although the latter

vectors cannot arise as outputs of LEWT, they could arise after processing in the transform

domain.) Since the distance (in the euclidean metric, say) between any two of the y’s can
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be arbitrarily large, comparison of signals in the non-length-preserving transform domain is

unreliable.

APPENDIX

ZERO-PADDED WAVELET TRANSFORM ROUTINE

A practical routine for the finite-length wavelet transform with zero padding is given in

pseudocode below. It can be used to compute either the length-preserving or the length-

extending transform. The signal length is assumed to be a multiple of 2K+1	N/4
 for the

length-preserving transform, or of 2K for the length-extending transform. A matlab version

of this routine has been tested using the “nearest-to-linear-phase” wavelets of [2] (divided

by
√

2) for values of N from 8 to 18, with zero-mean, unit-variance random signals of length

n = 384 and with K ranging from 1 to 4. In all cases the rms error between the original

signal and the signal reconstructed from the length-preserving transform was less than 10−10.

The routine follows the spirit of algorithms LEWT and LPWT of the text, although it

differs in several technical details. For one thing, the length-extending transform is com-

puted using repeated convolutions rather than matrix multiplications. For another, the

routine uses a different data format than the interleaved format of Eq. (14). The interleaved

format, although it simplifies analysis, is inefficient for practical use. This is due to the

increased spacing between the coefficients of different levels, so that 2k+1m̄ storage locations

are allocated to store only 2(k + 1)m̄ redundant coefficients. The routine uses instead the

following compact storage format:

x̂k = [akl ;d
1
l ;d

2
l ; . . . ;d

k
l ;x

k
c ; a

k
r ;d

1
r; . . . ;d

k
r ] (39)

where l and r refer to the left and right non-zero redundant coefficients, whose indices are

[−m, . . . ,−1] and [n/(2km), . . . , n/(2km) + m− 1], respectively.

The routine also uses a compacted version of the matrix SK , since as defined in Section

III, only (K + 1)m of its rows (corresponding to the redundant coefficients) and (K + 1)m

of its columns (corresponding to the first m central coefficients at each level) are non-zero.
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The routine uses the compacted and permuted matrix ŜK , which maps as follows:




aKl

d1
l

...

dK
l


 = ŜK




aKf

d1
f

...

dK
f


 (40)

where f refers to the first m central coefficients, whose indices are [0, . . . ,m − 1]. The

matrix ŜK is computed by the function EdgeToRedundant, which also makes use of two

other versions of Sk. The first version, S̄k, is based on the block size m̄ rather than m. It

is defined as in Eq. (40), but replacing K by k, l by l̄, and f by f̄ , where l̄ refers to indices

[−m̄, . . . ,−1] and f̄ refers to indices [0, . . . , m̄ − 1]. The second version, Šk interleaves the

kth level approximation and detail coefficients:




mix(ak
l̄
,dk

l̄ )

d1
l̄

...

dk−1
l̄


 = Šk




mix(ak
f̄
,dk

f̄ )

d1
f̄

...

dk−1
f̄


 (41)

where mix(a,d) ≡ [a0, d0, a1, d1, . . . , am̄, dm̄]T . The update formula for Šk is obtained by

reordering the rows and columns of Eq. (30):

Šk+1 =




B0S̄k
i,j 0

C0S̄k
i,i + B0 C0S̄k

i,j

S̄k
j,i S̄k

j,j



[

Q−1 −Q−1C0TD0S̄k
i,j

0 I

][
C0T D0T 0

0 0 I

]
(42)

where i = [1, . . . , m̄], j = [m̄ + 1, . . . , km̄], and

Q = C0TC0 + D0TD0 + C0TD0S̄k
i,j (42)

S̄k+1 is then computed from Šk+1 by reordering the rows and columns. Note that the matrix

to be inverted in Eq. (42) is only m̄ × m̄, while the matrix to be inverted in in Eq. (30) is

2km̄× 2km̄. Finally, S̄K is compacted to ŜK by deleting every m̄th row and column if N/2
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is even. In many applications, of course, ŜK can be precomputed and stored in a look-up

table.
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Function y = WaveletTransform (x, l, K, direction, option);
N = length(l); n = length(x); m = N/2 − 1;
h = 01:N ; for i = 1 : N ; hi = −1ilN+1−i; end;
if direction = “forward”;

if option = “length-preserving”;
f = 2K+1	N/4
;

elseif option = “length-extending”;
f = 2K ;

endif;
r = f�n/f� − n;
a = [01:m; x; 01:r+m];
y = 01:n+r+2(K+1)m;
for k = 1 : K;

d = ConvolveCompress(a,h);
a = ConvolveCompress(a, l);
ydetail(k,n+r,N,K) = d;

end;
yapprox(n+r,N,K) = a;
if option = “length-preserving”; y = y1:n+r; endif;

elseif direction = “inverse”;
if option = “length-preserving”;

S = EdgeToRedundant(l,h, K);

x = [x; Sxleft(N,K); −STxright(n,N,K)];
elseif option = “length-extending”;

n = n− 2(K + 1)m;
endif;
a = xapprox(n,N,K);
for k = K : −1 : 1;

d = xdetail(k,n,N,K);
a = DilateConvolve(a, l) + DilateConvolve(d,h);

end;
y = am+1:m+n;

endif;

Function y = ConvolveCompress (x, f);
N = length(f);
y = convolve(x, fN :−1:1); y = y2:2:length(y);

Function y = DilateConvolve (x, f);
N = length(f); n = length(x);
y = 01:2n−1; y1:2:2n−1 = x; y = [convolve(y, f)]N−1:2n;

Function S = EdgeToRedundant (l,h, K);
N = length(l); m̄ = 2	N/4
;
S = 01:m̄, 1:m̄; A = 01:m̄,1:3m̄;
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if 	N/4
 = N/4; p = 1; else; p = 0; endif;

for i = 1 : 2 : m̄; Ai:i+1, i+p:i+p+N−1 = [ l h ]T ; end;
D = A:, 1:m̄; C = A:, m̄+1:2m̄; B = A:, 2m̄+1:3m̄;
for k = 1 : K;

i = [1 : m̄]; j = [m̄ + 1 : km̄];
p = [[1 : 2 : 2m̄], [2m̄ + 1 : (k + 1)m̄], [2 : 2 : 2m̄]];

Q = (CTC + DTD + CTDSi,i)
−1;

S =


BSi,i

CSi,i + B

Sj,i


Q [CT DT −CTDSi,j ]

+


 0i,1:2m̄ BSi,j

0i,1:2m̄ CSi,j

0j,1:2m̄ Sj,j


;

S = Sp,p;
end;
if 	N/4
 = N/4; S1:m̄:(K+1)m̄,: = [ ]; S:,m̄:m̄:(K+1)m̄ = [ ]; endif;

Function i = detail (k, n,N,K);
% Returns indices of detail coefficients for scale k.
m = N/2 − 1; i1 = n + km; i2 = n + (K + k + 1)m;
i = [[i1 + 1 : i1 + m], [2k−1 + 1 : 2k : n], [i2 + 1 : i2 + m]];

Function i = approx (n,N,K);
% Returns indices of approximation coefficients.
m = N/2 − 1; i1 = n; i2 = n + (K + 1)m;
i = [[i1 + 1 : i1 + m], [1 : 2K : n], [i2 + 1 : i2 + m]];

Function i = left (N,K);
% Returns indices of left-edge central coefficients.
m = N/2 − 1; i = [1 : 2K : 2Km];
for k = 1 : K; i = [i, [2k−1 + 1 : 2k : 2km]]; end;

Function i = right (n,N,K);
% Returns indices of right-edge central coefficients.
m = N/2 − 1; i = [n− 2Km + 1 : 2K : n];
for k = 1 : K; i = [i, [n + 2k−1 − 2km + 1 : 2k : n]]; end;
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