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Abstract

A unifying algorithm has been developed to systematize the collection of compact
Daubechies wavelets computable by spectral factorization of a symmetric positive
polynomial. This collection comprises all classes of real and complex orthogonal
and biorthogonal wavelet filters with maximal flatness for their minimal length.
The main algorithm incorporates spectral factorization of the Daubechies product
filter into analysis and synthesis filters. The spectral factors are found for search-
optimized families by examining a desired criterion over combinatorial subsets of
roots indexed by binary codes, and for constraint-selected families by imposing
sufficient constraints on the roots without any optimizing search for an extremal
property. Daubechies wavelet filter families have been systematized to include those
constraint-selected by the principle of separably disjoint roots, and those search-
optimized for time-domain regularity, frequency-domain selectivity, time-frequency
uncertainty, and phase nonlinearity. The latter criterion permits construction of
the least and most asymmetric and least and most symmetric real and complex
orthogonal filters. Biorthogonal symmetric spline and balanced-length filters with
linear phase are also computable by these methods. This systematized collection
has been developed in the context of a general framework enabling evaluation of the
equivalence of constraint-selected and search-optimized families with respect to the
filter coefficients and roots and their characteristics. Some of the constraint-selected
families have been demonstrated to be equivalent to some of the search-optimized
families, thereby obviating the necessity for any search in their computation.
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1 Introduction

Since the discovery of compact orthogonal and biorthogonal wavelets by Dau-
bechies, various discussions of the general theory and specific parameteriza-
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tions of her wavelets have also been published (cf. [2,5,12,16] for literature
reviews). These compact Daubechies wavelets, which have the maximal num-
ber of vanishing moments for their minimal length, can be implemented as
discrete filters that are iterated or auto-convolved to generate approximations
of the continuous functions.

The Daubechies wavelet filters can be readily computed via spectral factor-
ization of a symmetric positive polynomial [1]. Significant advantages of the
spectral factorization approach include its generalizability to many different
classes and families of wavelets, its suitability for easily interpretable visual
displays, and thus its practicality in pedagogy. All of the complex orthogonal,
real orthogonal, and real biorthogonal families of the Daubechies class com-
putable by spectral factorization and constructed with a single unifying com-
putational algorithm have been studied experimentally in the systematized
collection developed by Taswell [10–12,15–17] over a wide range of vanishing
moment numbers and filter lengths.

In contrast, angular parameterization methods have usually been demon-
strated for wavelets with only one vanishing moment (i.e., less than maximal
flatness) and very short lengths [9] with the exception of [13]. But the latter
only verified orthogonality and vanishing moment numbers for the filters and
did not attempt any search through the angular parametrization space for
filters with desirable properties.

These comments highlight one of the essential questions in the development of
an algorithm for the design of wavelet filters: How much computational effort
should be expended in the construction of a wavelet filter possessing which
properties over which range of filter lengths? A basic assumption inherent in
the systematized collection of Daubechies wavelets [11,15,17] hypothesizes that
the spectral factorization approach affords the most economical generation of
wavelet filters with the best variety and combination of properties over the
widest range of filter lengths.

The economy of the spectral factorization method in comparison with the
angular parameterization method is achieved by the reduced size of the search
space for the filter root codes [16] relative to that for the filter coefficient angles
[9]. In [16], conjectures were made regarding schemes to enhance the efficiency
of the combinatorial search used in the design algorithm. In [17], a new design
principle was introduced within a general framework to demonstrate that the
search can be completely eliminated for those search-optimized filter families
for which equivalence has been demonstrated with constraint-selected filter
families. This survey reviews the development of the systematized collection
of Daubechies wavelets and summarizes the essential computational methods.
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2 General Framework

Consider a filter expressed as the complex z-domain polynomial F (z) with
corresponding vectors for the roots z ≡ [zj] ∈ Z and the coefficients f ≡
[fn] ∈ F . Associated with F (z), assume there exist three parameters, vectors
γ ∈ Γ, ξ ∈ Ξ, and scalar λ ∈ Λ, respectively, that index the filter within a
set of such filters forming a defined family, specify each indexed filter of the
family within a search space, and characterize its properties.

Applying this notation to the orthonormal Daubechies [1] and Rioul [7] wavelets,
γ ≡ [γ1, γ2] = [N, K] represents the number K of vanishing moments for
wavelet filters of length N = 2K and N > 2K, respectively. For angle space
methods [9] to generate orthonormal wavelets, ξ represents the set of angles
that specifies f for F (z). For binomial space methods [16] to generate Daube-
chies wavelets, ξ represents the set of binary codes that specifies z for F (z).
In both cases, λ represents a criterion obtained from an individual property
or a weighted combination of properties computed from z and/or f (such as
the filter’s time-domain regularity [14], phase nonlinearity [16], et c.) that
characterizes F (z).

Thus, γ and ξ determine F (z) and then F (z) determines λ with the mapping
of spaces Γ×Ξ �→ F ×Z �→ Λ. The parameters γ and ξ that determine F (z)
are called the indexing parameter and specification parameter, respectively.
The parameter λ that is determined by F (z) is called the characterization
parameter. If λ represents an individual property (rather than weighted com-
bination of properties), then λ is also termed a characteristic property of F (z).

2.1 Existence and Uniqueness

Given a defined filter family {Fγ(z)} indexed by γ, assume for fixed γ that a
finite sequence of filters Fγ,i(z) indexed by i can be generated by and evaluated
for corresponding sequences, respectively, of specification parameters ξi and
characterization parameters λi. If Ξ is an unbounded or continuous space, then
it can be appropriately bounded and discretized to permit a countably finite
sequence ξi.

Assuming restriction to a countably finite space Ξ, then the corresponding
spaces F ×Z and Λ are also countably finite. Further assuming a one-to-one
invertible mapping and uniqueness of the elements λi ∈ Λ (achieved if neces-
sary by the use of “tie-breaker” rules for the definition of the characterization
parameter λ), then finite countability of unique elements for an invertible
mapping implies that it is feasible to search for both elements λ ≡ mini λi and
λ ≡ maxi λi in the range and select the corresponding filters Fγ,i(z) in the
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domain.

2.2 Definitions and Inferences

A filter F (z) is called extremal if it can be shown to possess a characterization
parameter attaining an extreme manifested by either λ or λ. A filter F (z) is
called search optimized if it is generated by an algorithm that optimizes λ ∈ Λ
with an exhaustive search to ensure identification of either λ or λ. A filter F (z)
is called constraint selected if it is generated by an algorithm that specifies
sufficient constraints on ξ, f , or z to ensure uniqueness of F (z) and selection
of F (z) without a search. An indexed set of filters {Fγ(z)} ≡ {F (z;γ) : γ ∈ Γ}
is called a family if all members of the set are generated by the same algorithm,
a function g(ξ;γ), g(f ;γ), or g(z;γ), subject to the control of the indexing
parameter γ.

Two different filter families {Fγ(z)} and {F ′
γ(z)} generated by two different

algorithms g(·;γ) and g′(·;γ) are F -equivalent, or equivalent with respect to
(w.r.t.) the filter coefficient space F , if ‖fγ − f ′γ‖ < τ for all γ ∈ Γ with given
error tolerance τ(F). Analogously, {Fγ(z)} and {F ′

γ(z)} are Z-equivalent, or
equivalent w.r.t. the filter root space Z, if ‖zγ − z′

γ‖ < τ for all γ ∈ Γ with
given error tolerance τ(Z). Finally, they are Λ-equivalent, or equivalent w.r.t.
the characterization parameter space Λ, if |λγ − λ′

γ | < τ for all γ ∈ Γ with
given error tolerance τ(Λ).

A search-optimized filter is necessarily an extremal filter, whereas a constraint-
selected filter may or may not be an extremal filter. If a constraint-selected
filter can be shown to be equivalent to a search-optimized filter, then the
constraint-selected filter is also an extremal filter. Both F -equivalence and
Z-equivalence of two different filter families imply Λ-equivalence, but the con-
verse is not true.

3 Daubechies Polynomials

The generation of Daubechies wavelet filter families computable by spectral
factorization of the Daubechies polynomials requires a separate algorithm for
computing the roots of the product filter

PD(z) = (z + 1)2(D+1)QD(z) (1)

or its related form the quotient filter

QD(z) = (z + 1)−2(D+1)PD(z) (2)
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which is a Laurent polynomial of degree d2 = D with 2D roots. Both forms
are indexed by the integer parameter D ≥ 0.

Consider mappings x → y → z between three planes in the complex variables
x, y, and z. Use the x plane to find the roots of the conditioned polynomial
CD(x), map to the y plane for the roots of the binomial polymial BD(y), and
map again to the z plane for the roots of the quotient polynomial QD(z). All
three polynomials CD(x), BD(y), and QD(z) are considered related forms of
PD(z) called the conditioned, binomial, and quotient forms, respectively.

The quotient form QD(z) derives simply from division of the product form
PD(z) by all of its roots at z = −1. The binomial form ([2, Eq. 6.1.12], [8,
Eq. 1], [3, Eq. 1.7])

BD(y) =
D∑

i=0

(
D + i

i

)
yi (3)

derives from the binomial series for (1 − y)−(D+1) truncated at D + 1 terms.
These forms can be related through conformal mappings (see below).

To improve the numerical conditioning of the root finding problem for the
roots yi of BD(y), Shen and Strang [8] recommended the change of variables
x = κy with κ = 4, while Goodman et al. [3] recommended the change of
variables x = 1/y. Incorporating both transformations with x = 1/(κy), then

BD(y)=
D∑

i=0

(
D + i

i

)
yi

=(κy)D
D∑

i=0
κ−i

(
D + i

i

)
(κy)i−D

=x−DCD(x)

yields the conditioned form

CD(x) =
D∑

i=0
κ−i

(
D + i

i

)
xD−i. (4)

Now obtain the D roots xi of CD(x) by computing the eigenvalues of the
companion matrix. Then the D roots yi of the binomial form BD(y) can be
calculated simply as yi = 1/(κxi).

With another change of variables z+z−1 = 2−4y as described by Daubechies
[1,2], map the binomial form BD(y), a regular polynomial with D roots, to
the quotient form QD(z), a Laurent polynomial with 2D roots. Given the
Joukowski transformations [4, vol 1, pg 197, 223]
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w= f(z) = (z + z−1)/2 (5)

z = f−1(w) = w ±
√

w2 − 1 (6)

and the affine transformations

y= g(w) = (1− w)/2 (7)
w= g−1(y) = 1− 2y, (8)

then the composite mappings 1 yield the explicit solutions

y= g(f(z)) = (1− (z + z−1)/2)/2 (9)

z = f−1(g−1(y)) = 1− 2y ±
√
(1− 2y)2 − 1. (10)

The latter equation yields a doubly-valued solution with the reciprocal pair
{z, z−1}. When the pairs are regrouped as complex quadruplets {z, z−1, z̄, z̄−1}
and factors U(z; zi) ≡ (z − zi)(z − z−1

i )(z − z̄i)(z − z̄−1
i ) with any real duplets

{r, r−1} and factors V(z; rj) ≡ (z − rj)(z − r−1
j ), the Daubechies product

polynomial PD(z) expressed in regular form can be factored as

PD(z) = (z + 1)2(D+1)
ncq∏
i=1
U(z; zi)

nrd∏
j=1
V(z; rj) (11)

where ncq = �D/2� and nrd = D mod 2. For further details on the numerical
performance of these methods, refer to [12,16].

4 Spectral Factorization Rules

For an arbitrary polynomial F(z) with length N coefficients, there are N −
1 roots of which 0 ≤ K ≤ N − 1 may be at z = −1. When considering
spectral factorization, the product filter polynomial PD(z) with Np = 4D + 3
coefficients and Kp = 2D + 2 roots at z = −1 is factored into the analysis
and synthesis filter polynomials A(z) and S(z) with Na and Ns coefficients,
and Ka and Ks roots at z = −1, respectively. This factorization yields the
constraints

Np =Na + Ns − 1 (12)
Kp =Ka + Ks (13)

1 Unlike other sections where f and g may denote filters or arbitrary functions,
here f and g denote functions that are conformal maps in the complex domain.
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on the lengths of the three filters and their roots at z = −1. Each family of
filters described in subsequent sections has been named with an identifying
acronym followed by (N ;K) in the orthogonal cases for which

N =Na = Ns (14)
K =Ka = Ks (15)

is required, and by (Na, Ns;Ka, Ks) in the biorthogonal cases for which

Na =Ka + 4ncq
a + 2nrd

a + 1 (16)
Ns =Ks + 4ncq

s + 2nrd
s + 1 (17)

Np =2Kp − 1 (18)

is required. Here ncq
a , ncq

s , nrd
a , and nrd

s are the numbers of complex quadruplet
factors U(z; zi) and real duplet factors V(z; rj) for each of A(z) and S(z). Both
ncq and nrd may be whole or half integer. In the latter case, half of a complex
quadruplet and half of a complex duplet denote, respectively, a complex duplet
and a real singlet.

For Ka and Ks necessarily both odd or both even, then Kp is always even and
K = Kp/2 a whole integer determines ncq

p = ncq
a + ncq

s and nrd
p = nrd

a + nrd
s

according to ncq
p = �(K − 1)/2� and nrd

p = (K − 1) mod 2. If Ka and Ks are
given, then Kp and K yield ncq

p and nrd
p split into {ncq

a , nrd
a } and {ncq

s , nrd
s }

and the roots are factored accordingly. For real coefficients, a root z must be
paired with its conjugate z̄. For symmetric coefficients, a root z must be paired
with its reciprocal z−1. For 2-shift orthogonal coefficients, a root z must be
separated from its conjugate reciprocal z̄−1.

Thus, in the real biorthogonal symmetric case, each complex quadruplet U(z; zi)
and real duplet V(z; rj) must be assigned in its entirety to either A(z) or S(z).
In the real orthogonal case, each complex quadruplet is split into two conju-
gate duplets (z − zi)(z − z̄i) and (z − z−1

i )(z − z̄−1
i ), while each real duplet is

split into two singlets (z− rj) and (z− r−1
j ), with one factor assigned to A(z)

and the other to S(z). The complex orthogonal case is analogous to the real
orthogonal case except that the complex quadruplets are split into reciprocal
duplets (z − zi)(z − z−1

i ) and (z − z̄i)(z − z̄−1
i ) instead of conjugate duplets.

The complex orthogonal symmetric case requires use of complex quadruplets
without real duplets.

All orthogonal cases require K = Ka = Ks = Kp/2, ncq
a = ncq

s = ncq
p /2, and

nrd
a = nrd

s = nrd
p /2 with N = Na = Ns = 2K. Note that nrd

p can only equal
0 or 1. Therefore, in biorthogonal cases, either {nrd

a = 0, nrd
s = 1} or {nrd

a =
1, nrd

s = 0}. However, in orthogonal cases, either {nrd
a = nrd

s = 0} or {nrd
a =

nrd
s = 1/2} with 1/2 of a duplet denoting a singlet. For all real orthogonal cases
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as well as those complex orthogonal cases not involving symmetry criteria, K
can be any positive integer. For the complex orthogonal least-asymmetric and
most-asymmetric cases, K must be a positive even integer. For the complex
orthogonal least-symmetric and most-symmetric cases, K must be a positive
odd integer.

For the real biorthogonal symmetric cases, Ka and Ks must be both odd
or both even. In the biorthogonal symmetric spline case, all additional roots
(other than those at z = −1 with assignment determined by Ka and Ks)
are assigned to the analysis filter leaving the synthesis filter as the spline
filter. All other biorthogonal symmetric cases incorporate a root assignment
constraint that balances the lengths of the analysis and synthesis filters such
that Na ≈ Ns as much as possible. For Ka = 2i− 1 and Ks = 2j− 1 both odd
with i, j ∈ {1, 2, 3, . . . }, balancing of equal filter lengths is possible. In fact,
requiring both Ka = Ks and Na = Ns is also possible when N = Na = Ns = 2K
with K = Ka = Ks for {K = 1 + 4k | k = 1, 2, 3 . . . }. However, for Ka = 2i
and Ks = 2j both even, equal balancing of filter lengths Na and Ns is not
possible. The additional unbalanced roots are assigned to the analysis filter
such that Na > Ns leaving the synthesis filter as the shorter filter.

5 Daubechies Wavelet Filter Families

All filter families surveyed here are named, defined, and generated according to
the conventions, notation, and methods established in [15,16] for the system-
atized collection of wavelet filters computable by spectral factorization of the
Daubechies polynomial. However, one of the original families, named DROLD
in [15], was renamed DROMD in [17] in order to achieve consistency with the
more recent collection of families introduced in [17]. All of the acronyms used
for the filter family names abbreviate ‘D’ for Daubechies as the first character,
‘C’ or ‘R’ for complex or real as the second character, ‘O’ or ‘B’ for orthogo-
nal or biorthogonal as the third character, and then two additional characters
denoting an additonal description to distinguish each family from the others.

5.1 Constraint-Selected Families

In addition to the spectral factorization rules (Section 4) imposing the neces-
sary contraints for complex orthogonality, real orthogonality, and real biorthog-
onality, the least and most disjoint families are defined according to constraints
derived from the principle of separably disjoint root sets in the complex z-
domain. Consider only the roots of the quotient polynomial Q(z) (Equation 2)
and split this set of roots into two sets of roots {za

k} and {zs
l } for the analysis
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and synthesis filters A(z) and S(z).

These root sets from Q(z) must be disjoint with

∅ = {za
k} ∩ {zs

l } (19)

(because common roots at z = −1 for bothA(z) and S(z) from P(z) have been
excluded from consideration). Now let {Ca

i } and {Cs
j} denote finite collections

of open convex regions with the largest area domains that do not intersect yet
still cover the sets {za

k} and {zs
l }, respectively. More precisely,

∪kz
a
k ⊂∪iCa

i (20)
∪lz

s
l ⊂∪jCs

j (21)
∅=∩iCa

i (22)
∅=∩jCs

j (23)
∅= (∪iCa

i ) ∩ (∪jCs
j). (24)

Finally, let C denote the cardinality of the set

{Ca
i : i = 1, . . . , I; Cs

j : j = 1, . . . , J} (25)

as measured by the number C = I + J of regions covering all the roots of
Q(z). Then root sets {za

k} and {zs
l } are called least and most disjoint if C is,

respectively, the maximum or minimum possible subject to the constraints of
the spectral factorization rules imposed.
Table 1
Filter Designs for Some Constraint-Selected Families with Roots zj = rje

iθj

Acronym Q(z)→ A(z) Q(z)→ S(z)
DCOMD {(zj , z

−1
j ) : (rj < 1) ∧ (θj ≥ 0)} {(zj , z

−1
j ) : (rj > 1) ∧ (θj ≤ 0)}

DROMD {(zj , z̄j) : rj < 1} {(zj , z̄j) : rj > 1}
DRBMD {(zj , z̄j , z

−1
j , z̄−1

j ) : θj < θ∗} {(zj , z̄j , z
−1
j , z̄−1

j ) : θj > θ∗}
DRBSS {(zj , z̄j , z

−1
j , z̄−1

j )} ∅

Table 1 summarizes the spectral factorizations for the DCOMD, DROMD,
and DRBMD filter families designed with most disjoint (MD) root sets. The
factorizations for the DCOLD, DROLD, and DRBLD filters designed with
least disjoint (LD) root sets cannot be summarized as concisely. However, the
corresponding algorithms order the roots by angle and impose the maximum
number of alternations for the assignments in the split to A(z) and S(z).
The algorithm for DRBLD was also modified to devise another family called
DRBRD with regular disjoint (RD) root sets. For comparison, Table 1 also
includes the spectral factorization for the DRBSS family with symmetric spline
(SS) root sets.
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5.2 Search-Optimized Families

Numerical estimates of defined filter characterization parameters λ are used as
selection criteria for all other families subjected to optimization in combinato-
rial searches of the root sets. These criteria [14] include the phase nonlinearity
pnl(A), time-domain regularity tdr(A), frequency-domain selectivity fds(A),
and time-frequency uncertainty tfu(A). Most of the orthogonal families are
defined by pnl(A) selecting for varying degrees of asymmetry or symmetry.
Work reported in [11,12,15] was later revised in [16] by the shift of the inte-
gration interval for pnl(A) from [0, 2π] to [−π, π] and by the use of pnl(A)
as a “tie-breaker” criterion for families selected by the other criteria. These
revisions now insure unique criterion values for each root set examined in the
combinatorial search (which can be performed ignoring binary complements
for orthogonal families).

Minimizing or maximizing pnl(A) for real filters defines DROLA and DROMA,
respectively, the least asymmetric (LA) and most asymmetric (MA) families.
If the parity of K is ignored, then minimizing or maximizing pnl(A) for com-
plex filters defines DCOLN and DCOMN, respectively, the least nonlinear
(LN) and most nonlinear (MN) families. Phase nonlinearity does not exist
and cannot be used for the real biorthogonal families all of which are sym-
metric. Therefore, one of the other characterization parameters must be used
as an optimization criterion. Also, these biorthogonal families are subjected
to the length constraints determined by the principle of maximally balancing
the filter lengths for both A(z) and S(z).

For all but several of the search-optimized families, the selection criterion is
optimized for A(z). The exceptions are the DRBBR, DRBBS, and DRBBU
families with balanced regular (BR), balanced selective (BS), and balanced
uncertain (BU) root sets. Instead, the selection criterion is optimized for both
A(z) and S(z) by maximizing a balancing measure B defined as

B(λ(·),A,S) =
∣∣∣∣∣λ(A) + λ(S)
λ(A)− λ(S)

∣∣∣∣∣ (26)

where λ(·) is either tdr(·), fds(·), or tfu(·), respectively, for DRBBR, DRBBS,
and DRBBU.

Table 2 summarizes filter designs for some of the search-optimized families.
The index constraints tabulated are those required to generate the defined
family. However, for purposes of comparison between families in tables and
figures, the definitions for all orthogonal families have been extended to begin
at K = 1. For example, DCOLN(6;3) is complex as expected, but DCOLN(4;2)
and DCOLN(2;1) are real. Also, note that the DCOLN family is the union
of the even-indexed DCOLA and odd-indexed DCOMS families, while the
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Table 2
Filter Designs for Some Search-Optimized Families

Real Biorthogonal Description Index Constraint Optimization

DRBLU Least Uncertain even (Ka +Ks) min tfu(A)
DRBMS Most Selective even (Ka +Ks) max fds(A)
DRBMR Most Regular even (Ka +Ks) max tdr(A)
DRBBR Balanced Regular even (Ka +Ks) maxB(tdr(·),A,S)

Real Orthogonal Description Constraint Optimization

DROLU Least Uncertain K ≥ 1 min tfu(A)
DROMR Most Regular K ≥ 1 max tdr(A)
DROLA Least Asymmetric K ≥ 1 min pnl(A)
DROMA Most Asymmetric K ≥ 1 maxpnl(A)

Complex Orthogonal Description Constraint Optimization

DCOLU Least Uncertain K ≥ 3 min tfu(A)
DCOMR Most Regular K ≥ 3 max tdr(A)
DCOLS Least Symmetric odd K ≥ 3 maxpnl(A)
DCOMS Most Symmetric odd K ≥ 3 min pnl(A)
DCOLA Least Asymmetric even K ≥ 4 min pnl(A)
DCOMA Most Asymmetric even K ≥ 4 maxpnl(A)
DCOLN Least Nonlinear K ≥ 3 min pnl(A)
DCOMN Most Nonlinear K ≥ 3 maxpnl(A)

DCOMN family is the union of the even-indexed DCOMA and odd-indexed
DCOLS families. Complete details for the algorithms to compute each of the
various selection criteria can be found elsewhere [12,14].

6 Unifying Algorithm

All filter families of the systematized collection of Daubechies wavelet filters
[12,16] are generated by the spectral factorization and selection of root sets
(with either the predetermined constraints or the optimizing combinatorial
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search) incorporated in the following algorithm:

(1) Input the identifying name FiltName for the family of filters and the
indexing design parameters Ka and Ks.

(2) Compute the numbers Kp = Ka + Ks, D = Kp/2− 1, ncq
p = �D/2�, and

nrd
p = D mod 2.

(3) Compute the ncq
p sets of complex quadruplet roots and the nrd

p sets of real
duplet roots of the quotient filter QD(z).

(4) Access the factorization and selection rules that define the family of filters
named FiltName.

(5) Apply the rules to {ncq
p , nrd

p } for the FiltName filter pair indexed by
{Ka, Ks} and compute the splitting number pairs {ncq

a , ncq
s } and {nrd

a , nrd
s }.

(6) If FiltName is a constraint-selected family, apply the rules to select the
4ncq

a + 2nrd
a roots for A(z) and the 4ncq

s + 2nrd
s roots for S(z) and jump

to Step 11.
(7) Sort the roots in an order convenient for the class of splitting appropriate

to the type of filter. All roots of a complex quadruplet should be adjacent
with duplets of the quadruplet subsorted according to conjugates or re-
ciprocals depending on the filter type. Assign binary coded labels 0 and
1 to the first and second duplet of each quadruplet. Analogously, assign
binary codes to the first and second singlet of the real reciprocal duplet
if present. If biorthogonal, assign binary coded labels 0 or 1 to each of
the entire quadruplets and duplets.

(8) Generate the possible binomial subsets for these binary codes [6] subject
to the imposed factorization rules and splitting numbers. For orthogonal
filters, there are a total of ncq

a +nrd
a binary selections without constraint on

the bit sum, and thus 2ncq
a +nrd

a −1 binomial subsets ignoring complements.
For biorthogonal filters, there are a total of ncq

p binary selections with bit
sum constrained to ncq

a , and thus
(

ncq
p

ncq
a

)
binomial subsets.

(9) For each root subset selected by the binomial subset codes, characterize
the corresponding filter by the optimization criterion appropriate for the
FiltName family. These optimization criteria may be any of the numer-
ically estimated characterization parameters λ computed from the roots
z or the coefficients f .

(10) Search all root subsets to find the one with the optimal value of the
desired criterion. If necessary, apply the “tie-breaker” criterion.

(11) Include the Ka + Ks required roots at z = −1 with Ka for the optimal
subset of roots intended for the analysis factor A(z) and with Ks for the
complementary subset intended for the synthesis factor S(z) and compute
the filter coefficients.

(12) If FiltName is an orthogonal search-optimized family, compare the se-
lected (primary) subset of filter roots and coefficients with its comple-
mentary subset to choose the one with minimax group delay over the
interval ω ∈ [0, π] as the subset for A(z). If FiltName is a biorthogonal
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search-optimized family, compare the primary and complementary sub-
sets only if Ka = Ks, ncq

a = ncq
s , and nrd

a = 0 = nrd
s in order to choose the

one with the defining criterion optimized for A(z).
(13) Output roots z and coefficients f for each of A(z) and S(z).

For search-optimized families, full searches of all possible combinatorial sub-
sets should be performed for a sufficient number of values of K indexing the
filter family’s members in order to infer the appropriate pattern of binary codes
with bit sums characterizing the family. Using such a pattern permits success-
ful partial rather than full combinatorial searches. These partial searches pro-
vide significant reduction in computational complexity convenient for larger
values of K, for example, for searches with K > 30 computed on desktop
workstations current in 1999.

7 Examples and Comparisons

Figure 1 displays spectral factorizations for each of the least and most disjoint
filter families at Ka = Ks = 16 for D = 15. Roots for A(z) and S(z) are
marked with “o” and “x”, respectively. As an example of the principle of
minimizing and maximizing the cardinality C, observe that C = 3 for DRBMD
and C = 13 for DRBLD. Note that C "= 2 for DRBMD because convexity is
required for each of the non-intersecting covering regions, and C "= 26 for
DRBLD because the largest area possible is required for each of the regions.
Figure 2 displays the wavelets corresponding to A(z) for the six examples in
Figure 1. Both the real parts (solid lines) and imaginary parts (dotted lines)
are shown for complex scalets and wavelets.

All filters of all families were demonstrated to meet or surpass requirements for
orthogonality, biorthogonality, and reconstruction when tested [14] in 2-band
wavelet filter banks. In general, reconstruction errors ranged from “perfect” at
O(10−16) to “near-perfect” at O(10−8) as K ranged from K = 1 to K = 24 for
both orthogonal and biorthogonal classes. All search-optimized filter families
were observed to have the optimal values of their defining selection criterion
when compared to the other families.

Figures 3–6 display values of various characteristic properties for the filter
families. The families are listed in the legends sorted in order of the properties’
median values for A(z) over the range of the indexing parameter. These figures
and the corresponding numerical values in tables can be examined to assess
Λ-equivalence. Refer to [12,16] for a complete catalogue of all results for all
of the filter families with both numerical tables of parameter estimates and
graphical displays of the filters in the time, frequency, and z domains.

13



Although named distinctly because of their different computational algorithms,
there are several pairs of filter families which should ideally be F -, Z- and Λ-
equivalent. These pairs provide a test for verifying computational methods.
The DROMD and DROMA families should be equivalent real families, while
the DCOMD and DCOMN families should be equivalent complex families.
Numerical experiments have confirmed these expected results. All constraint-
selected families have been compared with the search-optimized families for
Ka = Ks = 1, . . . , 24. Each member of the following sets of filter families
have been demonstrated to be F -equivalent to the other members of the
set with τ(F) at machine precision: {DRBMD, DRBMU, DRBLS, DRBLR},
{DRBRD, DRBMR}, {DROMD, DROMA}, and {DCOMD, DCOMN}.

Figures 3 and 4 present visually dramatic contrasting examples of the presence
and absence of Λ-equivalence, respectively, for the orthogonal and biorthogonal
families with regard to the property of time-domain regularity. Examination
of these figures reveals that of those displayed, all of the orthogonal families,
but none of the biorthogonal families, are Λ-equivalent with τ(Λ) < 0.2 for
time-domain regularity. Figures 5 and 6 demonstrate that {DROLD, DROLU}
and {DROLD, DROLA} are each Λ-equivalent pairs of orthogonal families,
respectively, with regard to time-frequency uncertainty and phase nonlinear-
ity. Analogous results for biorthogonal families have shown that {DRBMR,
DRBLU} is a Λ-equivalent pair with regard to time-frequency uncertainty
for A(z), but there is no such pair with regard to frequency-domain selec-
tivity. Note that since the pair {DRBRD, DRBMR} is F -equivalent, then
the pair {DRBRD, DRBMR} is Λ-equivalent with regard to time-domain
regularity and the pair {DRBRD, DRBLU} is Λ-equivalent with regard to
time-frequency uncertainty.

8 Discussion

An algorithm has been developed to unify all of the diverse families of real and
complex orthogonal and biorthogonal Daubechies wavelets. This automated
algorithm is valid for any order K of wavelet and insures that the same consis-
tent choice of roots is always made in the computation of the filter coefficients.
It is also sufficiently flexible and extensible that it can be generalized to select
roots for filters designed by criteria other than those that already comprise
the systematized collection of Daubechies wavelets [11,15,17].

Systematizing a collection of filters with a mechanism both for generating and
evaluating the filters enables the development of filter catalogues with tables
of numerical parameter estimates characterizing their properties. Providing
estimates for a variety of characteristics in both time and frequency domains,
rather than just the optimized characteristic, constitutes an important as-
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pect of these tables which enhances their utility. Use of these catalogues as a
resource enables the investigator to choose an available filter with the desir-
able characteristics most appropriate to his research problem or development
application.

The systematized collection of Daubechies wavelets has been developed within
the context of a general filter design framework consisting of indexing parame-
ters γ ∈ Γ, specification parameters ξ ∈ Ξ, filter coefficients f ∈ F , filter roots
z ∈ Z, characterization parameters λ ∈ Λ, their corresponding spaces, and the
mappings between the spaces. Within this framework, definitions have been
introduced for filter families that are either search optimized or constraint se-
lected, for the equivalence of families, and for new design principles based on
disjoint root sets and filter characteristic properties.

Several pairs of both F -equivalence and Λ-equivalence have been demon-
strated for both orthogonal and biorthogonal classes of filter families. If Λ-
equivalence exists between a constraint-selected family and a search-optimized
family with respect to a particular characterization parameter λ as an ex-
tremal property, then the constraint-selected family can be used to replace
the search-optimized family, and thus to obviate the necessity for a search in
the computational algorithm. As an important example, the DROLD (least
disjoint) family can be used as an effective substitute for the DROLA (least
asymmetric) family.

The Λ-equivalent substitution of a constraint-selected family for a search-
optimized family enables fast computation of those constraint-selected family
members for which the corresponding search-optimized family members would
require excessively slow computation. Because of the Λ-equivalence, this sub-
stitution can be performed without any loss greater than the tolerance τ(Λ)
for the parameter λ representing the characteristic property of the filter. Suf-
ficiently fast computation of filters within required error tolerances becomes
critically important for real-time or on-line adaptive applications.

The spectral factorization approach advocated here for the systematized col-
lection of Daubechies wavelets has been criticized [18,9] for the numerical in-
stabilities associated with finding the roots of a symmetric positive polynomial
at high orders. However, the angular parameterization methods, albeit avoid-
ing the root-finding problem, do not guarantee that filters generated by lattices
will have other desireable characteristics such as maximal frequency-domain
selectivity or minimal time-frequency uncertainty. Although the parameter-
space constraint on the angles for K = 1 vanishing moment on the wavelet [9]
may insure some time-domain regularity and other desireable characteristics
with relevance to low order filters with small N , it does not necessarily for high
order filters with large N . Searching a parameter space for the correspond-
ing large K becomes increasingly computationally expensive. Thus, finding
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a filter with desireable characteristics becomes more difficult because of the
unrestricted search space. Although the angular parameterization of Zou and
Tewfik [18] does impose constraints for more than one vanishing moment, they
did not present any filter examples for K > 2.

In contrast, Daubechies wavelets with a wide variety and combination of de-
sireable filter characteristics can be readily computed via spectral factorization
as demonstrated in the systematized collection developed in [11,15,17] and re-
viewed here. Thus, despite the criticism of other authors [18,9] regarding the
numerical instabilities inherent in spectral factorization, so far the method re-
mains more useful in generating higher order wavelets with more than one van-
ishing moment. Clearly, each of the different approaches has advantages and
disadvantages. Therefore, the most prudent and practical position to adopt
would be that of verifying for each algorithm its utility in terms of the class
of filters and range of filter lengths N for which the algorithm is valid, the
possible combinations of desired filter characteristics for which a search can
be done, and the computational complexity of the search for filters with those
characteristics. As reviewed here, this task has been completed for the Dau-
bechies wavelets computed via spectral factorization.
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Disjoint Sets of Daubechies Polynomial Roots
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Fig. 1. Examples of disjoint sets of Daubechies polynomial roots.

Wavelets for Disjoint Root Set Examples
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Fig. 2. Analysis wavelets for disjoint root set examples.
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Fig. 3. Time-domain regularity for orthogonal filters.
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Fig. 4. Time-domain regularity for biorthogonal filters.
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Fig. 5. Time-frequency uncertainty for orthogonal filters.
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Fig. 6. Phase nonlinearity for orthogonal filters.
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