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ABSTRACT

Search algorithms for finding signal decompositions called
near-best bases using decision criteria called non-additive in-
formation costs are proposed for selecting bases in wavelet
packet transforms. These new methods are compared with
the best bases and additive information costs of Coifman and
Wickerhauser [1]. All near-best and best bases were also com-
pared with the matching pursuit decomposition of Mallat and
Zhang [2]. Preliminary experiments suggest that for the ap-
plication of time-frequency analysis, a wide variety of results
can be obtained with the different methods, and that for the
application of data compression, the near-best basis selected
with non-additive costs may outperform the best basis se-
lected with additive costs.

1. INTRODUCTION

Coifman and Wickerhauser [1] presented an algorithm for
the selection of the best basis in a library of bases gener-
ated by the wavelet packet transform or other similar trans-
forms (such as local trigonometric transforms) which can be
represented and searched as balanced binary trees. They
defined the best basis to be that which minimized an infor-
mation cost function M and chose the Shannon entropy as
their archetype for M. Wickerhauser [3] discussed several
additional information cost functions including the �p norm
and the logarithm of energy. However, experimental results
have been reported only for the Shannon entropy. Further-
more, the Coifman-Wickerhauser best basis search algorithm
requires the key restriction of additivity for the information
cost function. In this report, I propose a new search algo-
rithm (that does not require this restriction) for use with
several new non-additive information cost functions and pro-
vide preliminary experimental results comparing the various
methods on artificial transient and real speech test signals.

2. ADDITIVE COSTS

Recalling definitions from Coifman and Wickerhauser [1]:
Definition: A map Madd from sequences {xi} to R is called

an additive information cost function if Madd(0) = 0 and
Madd({xi}) =

∑
i
Madd(xi).

Definition: The best basis relative to Madd for a vector
x in a library B of bases is that B for which Madd(Bx) is
minimal.

Here, for a vector x ∈ RN and orthonormal matrix B ∈
RN×N , then y = Bx and Madd(y) are respectively the coeffi-
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cient vector and additive information cost scalar for x in the
coordinate system represented by the basis B. Now scale y
to the unit vector u in the �2 norm with ui = yi/‖y‖2 so that
the transform vector has energy ‖u‖2

2 = 1. Then define the
additive information cost functions

Madd
1 (u) = H(u) =

∑
i:ui 
=0

u2
i lnu2

i

Madd
2 (u) = E(u) =

∑
i:ui 
=0

lnu2
i

Madd
3 (u) = �p(u) =

(∑
i

|ui|p
)(1/p)

which are respectively the Shannon entropy, the log energy,
and the �p norm (cf. [3]).

3. NON-ADDITIVE COSTS

Additive costs and best bases can be extended to non-
additive costs and near-best bases.

Definition: A map Mnon from sequences {xi} to R is called
a non-additive information cost function if it serves as a se-
lection criterion for a basis search algorithm and it is not an
additive information cost function Madd.

Definition: The near-best basis relative to Mnon for a vec-
tor x in a library B of bases is that B ∈ B∗ ⊂ B for which
Mnon(Bx) is minimal.

Here B∗ is the proper subset of library bases which are
searched by the Coifman-Wickerhauser algorithm. Searching
B∗ yields the optimal or best basis for an additive information
cost function Madd (cf. proof [1, page 717]). However, since
B∗ 
= B, this search is not exhaustive and cannot guarantee
the selection of a best basis for a non-additive information
cost function Mnon. The selected basis is therefore called a
near-best basis. Prototypes for Mnon can be constructed with
the sorted vector [vk(u)] where

v1(u) = |ui1
| ≥ · · · ≥ vN (u) = |uiN

|

so that vk(u) = |uik
| is the kth largest absolute value element

of the unit vector [ui]. The decreasing-absolute-value sorted
vector [vk] suffices to define the weak-�p norm (cf. [4]). How-
ever, constructing the decreasingly sorted, powered, cumula-
tively summed, and renormalized vector [wk(u, p)] where

wk(u, p) =

(
k∑

j=1

vpj (u)

)
/

(
N∑
j=1

vpj (u)

)
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makes it convenient to define several other Mnon. (Note
that 0 ≤ wk(u, p) ≤ 1 because of the normalization.) Thus,
with [vk(u)] and [wk(u, p)] obtained from [ui], define the non-
additive information cost functions

Mnon
1 (u) = W�p(u) = max

k
k(1/p)vk(u)

Mnon
2 (u) = N p

f (u) = arg min
k

|wk(u, p) − f |

Mnon
3 (u) = Ap(u) = N −

∑
k

wk(u, p)

which are respectively the weak-�p norm, data compression
number, and data compression area. Here the power p and
fraction f can be taken from the intervals 0 < p ≤ 2 and
0 < f < 1. The functions N p

f and Ap were designed to
yield scalar values that could be meaningfully minimized in
a basis search algorithm and were named according to their
natural or geometric interpretation. For example, choosing
p = 2 and f = 0.99 and then using N 2

0.99 yields the minimum
number of vector coefficients containing 99% of the energy of
the entire vector. The data compression number N p

f and area

Ap can be contrasted by observing that the number N p
f is a

local measure with varying “sensitivity” to different intervals
of the wk versus k curve whereas the area Ap is a global
measure of the entire curve. The minimum values attainable
represent maximum compression. They are readily computed
for a Kroniker delta vector δ with unit energy: N p

f (δ) = 1

and Ap(δ) = 0.

4. BEST BASIS SEARCH

Wickerhauser [3] provided notes for an implementation of the
best basis search. This search algorithm is presented here
with some changes in terminology and notation and with an
emphasis on data structure implementation using matrices
and vectors. A discrete packet transform is considered to
be any multiresolution transform (such as a wavelet packet
transform or local trigonometric transform) that yields a ta-
ble of transform coefficients which can be organized as a bal-
anced binary tree. The table is called a discrete packet table
P with levels l and blocks b of the table corresponding to
levels l and branches b of the tree. For both tables and trees,
the finest and coarsest resolution scales are indexed levels 0
and L respectively. There are 2l blocks on each level and
thus K = 2(L+1) − 1 blocks in the entire table. Within each
block b on level l, there are 2−lN cells c where N is the length
of the original signal x. Thus each coefficient in the packet
table P can be specified as the 4-vector [a, l, b, c] where a is
the packet’s amplitude and l, b, and c are its level, block, and
cell indices.

To exploit modularity, it is necessary to build two trees
for each packet table P: the additive information cost tree
Cadd and the basis selection tree S. In WavBox 4.1 c© 1994
Carl Taswell, the functions dpt2ict and ict2bst perform these
mappings from discrete packet table to information cost tree
and from information cost tree to basis selection tree, re-
spectively. This modularity permits 1) the output of various
Cadd for the same P input to dpt2ict with various choices of
Madd as second argument, and 2) the output of various S for
the same Cadd input to ict2bst with various choices of basis
selection method1 as second argument.

1The only basis selection method presented here for additivie
costs is the best basis search; others include the best level search
and the restricted best basis search [5].

Finally, to compare various decompositions, it is conve-
nient to convert discrete packet tables Ptable to discrete packet
lists Plist representing the selected bases. Each list contains
M packets specified as row 4-vectors [ai, li, bi, ci] with rows
i = 1, ...,M ordered so that |a1| ≥ · · · ≥ |aM |. In WavBox 4.1,
the function dpt2dpl performs this restructuring of the data
via the mapping Plist = dpt2dpl(Ptable,S). To study the
complete basis decomposition, we must examine the entire
list where M = N ; however, we may also study subsets
of the list where M < N , for example, where we choose
M = N 2

0.99 < N .
Thus, there are four data structures: Ptable ∈ RN×(L+1),

Cadd ∈ RK , S ∈ χK where χ = {0, 1}, and Plist ∈ RM×4.
Since tables and trees are implemented respectively as matri-
ces and vectors, table blocks and corresponding tree branches
indexed by (l, b) are respectively vectors and scalars; they are
denoted P table

lb ≡ P table
ilb,jlb

, Cadd
lb ≡ Cadd

klb
, and Slb ≡ Sklb where for

l ∈ {0, 1, . . . , L} and b ∈ {0, 1, . . . , 2l−1}, the row and column
vector indices ilb, jlb are for level l block b in a table matrix,
and the scalar index klb is for level l branch b in a tree vector.
Since the ith packet in Plist will be denoted P list

i ≡ [ai, li, bi, ci],
it should be clear from context that Pi is from the list Plist

while Plb is from the table Ptable.
Now with Cadd

lb = Madd(Plb) already computed for all l
and b, and Slb initialized to 1 for all b on level L and to 0
elsewhere, then the selection step of the best basis search can
be expressed as

if Cadd
lb ≤ Cadd

l+1,2b + Cadd
l+1,2b+1

then Slb = 1
else Cadd

lb = Cadd
l+1,2b + Cadd

l+1,2b+1

and the search is performed breadth-first and bottom-up
through the tree. Retaining only the top-most selected
branches of S by resetting any lower selected branches to 0
(ie.,pruning descendant lines) yields the best basis selection
tree S with Slb = 1 indicating a selected branch.

5. NEAR-BEST BASIS SEARCH

The same sequence of comparisons of basis blocks’ informa-
tion costs are performed for the near-best basis search as for
the best basis search. However, Madd is replaced by Mnon.
This substitution invalidates the modular independence sepa-
rating computation of costs from selection of bases described
in Section 4. It is therefore necessary to combine the basis se-
lection with the cost computation. So with Cnon

lb = Mnon(Plb)
already computed for all b on level L, and Slb initialized to
1 for all b on level L and to 0 elsewhere, then the selection
step of the near-best basis search can be expressed as

Cnon
lb = Mnon(Plb)

if Cnon
lb ≤ Mnon(Pl+1,2b ⊕ Pl+1,2b+1)

then Slb = 1
else Plb = Pl+1,2b ⊕ Pl+1,2b+1

and the search is performed breadth-first and bottom-up
through the tree with pruning of descendant lines as de-
scribed in Section 4. Although not detailed here, it is pos-
sible to implement this algorithm without repeating for the
same coefficients the sorts and powers required by Mnon. In
WavBox 4.1, the function dpt2bst performs this mapping
from discrete packet table to basis selection tree. The ad-
ditional computational cost of dpt2bst with Mnon relative to
dpt2ict and ict2bst with Madd is essentially the cost of the
sorting required by the examples W�p, N p

f , and Ap of Mnon

described in Section 3.
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6. EXPERIMENTS

For both time-frequency and data-compression analyses,
wavelet packet decompositions by best basis search with addi-
tive costs (WPDB(Madd)) or near-best basis search with non-
additive costs (WPDB(Mnon)) were compared with wavelet
packet decompositions by matching pursuit (WPDP). Al-
though not reviewed in detail here, the nonorthogonal match-
ing pursuit method of Mallat and Zhang [2] decomposes an
N -coefficient signal x into an M -packet list Plist usually for
which M << N . Therefore, to compare WPDB(Madd),
WPDB(Mnon), and WPDP decompositions, M was chosen to
be variable and representing equal energy for time-frequency
distribution comparisons, while fixed and representing equal
bit-rate for data-compression distortion comparisons.

Experiments were performed on the test signals (artificial
“transients” with N = 512 and the spoken word “greasy”
with N = 5632) studied in [2]; these signals were kindly pro-
vided by S. Mallat. They were analyzed by WPDB(Madd),
WPDB(Mnon), and WPDP using wavelet packet libraries
constructed from boundary-adjusted wavelets [6] of order
2–5 (with interior wavelet filters of length 4–10) and from
circular-periodized wavelets [7] of order 8–10 (with length 16–
20) where all of these wavelets were derived from Daubechies’
orthogonal least asymmetric family [8]. The test signals
were analyzed to maximum level L = 5 for “transients”
and L = 8 for “greasy”. All tables of results are shown for
the test signal “transients” analyzed with circular-periodized
wavelets of order 8. In each table’s left-most column listing
all the different decompositions, the names WPDB(Madd)
and WPDB(Mnon) were abbreviated to just the particular
choice of Madd or Mnon.

6.1. Time-Frequency Analysis

For the comparison of time-frequency distributions, all Plist

were truncated to M packets with M = N 2
0.99 different for

each Plist. Histograms of these variable-M equal-energy
packet lists were then computed for total energy, cells, and
blocks per individual level l (cf. Table 1). These histograms
demonstrate wide variations in the resulting distributions
of energies, cell-numbers, and block-numbers across lev-
els for the different decompositions. Because the distribu-
tion of selected blocks across levels of a packet decompo-
sition corresponds to the distribution of sizes and shapes
of tiles in a time-frequency tiling plot of cell energies a2

i

(ith packet’s squared amplitude), the observed numerical dif-
ferences in histograms were also visually apparent in these
time-frequency plots. In an attempt to quantitate these
visual differences, all variable-M equal-energy packet lists
were displayed as rectangular tilings of the time-frequency
plane represented as an image matrix of size 512 × 512.
Then relative mean-square errors (MSE) and 2-dimensional
cross-correlations (CC2) were computed for each of the
WPDB(Madd) and WPDB(Mnon) relative to the WPDP (cf.
Table 2). Results for these statistics again demonstrate
wide variation in time-frequency distributions for the differ-
ent decompositions. Furthermore, for the particular example
shown here, WPDB(N 1.0

0.999) yielded a higher quantitative cor-
relation with WPDP than did WPDB(H).

6.2. Data Compression

For the comparison of data-compression distortions, all Plist

were truncated to M packets with M fixed the same for all
Plist. This fixed M was chosen to be that M = N 2

0.99 obtained
from the WPDP. The packet amplitudes were then uniformly
quantized at each of the bit rates r = {0, 1, 2, 3, 23} for each

Table 1. Time-frequency distribution histograms.

Decomp. l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

Energy of selected cells per level l.
H 0 0 .305 .392 .099 .196
E 0 0 .142 .501 .268 .082
�0.5 0 0 0 0 0 .993
�1.0 0 0 0 .696 .138 .158
�1.5 .993 0 0 0 0 0
W�0.5 0 0 0 .501 .268 .224
W�1.0 0 0 0 .481 .213 .299
W�1.5 0 0 .364 .410 .157 .062
A0.5 0 0 0 .413 .498 .082
A1.0 0 0 0 .413 .467 .113
A2.0 0 0 0 .697 .099 .196
N 1.0

0.900 0 0 0 .218 .663 .113
N 1.0

0.990 0 0 .142 .479 .334 .038
N 1.0

0.999 0 0 .993 0 0 0
N 2.0

0.900 0 0 0 .481 .285 .226
N 2.0

0.990 0 0 0 .413 .420 .159
N 2.0

0.999 0 0 0 .413 .498 .082
WPDP .100 .104 .278 .123 .247 .148

Number of selected cells per level l.
H 0 0 67 107 40 49
E 0 0 66 93 67 32
�0.5 0 0 0 0 0 282
�1.0 0 0 0 161 53 40
�1.5 343 0 0 0 0 0
W�0.5 0 0 0 94 76 80
W�1.0 0 0 0 116 63 84
W�1.5 0 0 92 91 65 28
A0.5 0 0 0 86 129 32
A1.0 0 0 0 87 111 48
A2.0 0 0 0 164 40 50
N 1.0

0.900 0 0 0 54 145 48
N 1.0

0.990 0 0 66 109 74 14
N 1.0

0.999 0 0 298 0 0 0
N 2.0

0.900 0 0 0 120 76 66
N 2.0

0.990 0 0 0 87 111 48
N 2.0

0.999 0 0 0 86 129 32
WPDP 17 22 26 36 41 39

Number of selected blocks per level l.
H 0 0 1 3 3 6
E 0 0 1 3 4 4
�0.5 0 0 0 0 0 32
�1.0 0 0 0 5 4 4
�1.5 1 0 0 0 0 0
W�0.5 0 0 0 3 5 10
W�1.0 0 0 0 4 4 8
W�1.5 0 0 1 3 4 4
A0.5 0 0 0 3 8 4
A1.0 0 0 0 3 7 6
A2.0 0 0 0 5 3 6
N 1.0

0.900 0 0 0 2 9 6
N 1.0

0.990 0 0 1 3 5 2
N 1.0

0.999 0 0 4 0 0 0
N 2.0

0.900 0 0 0 4 4 8
N 2.0

0.990 0 0 0 3 7 6
N 2.0

0.999 0 0 0 3 8 4
WPDP 1 2 4 8 15 22
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Table 2. Time-frequency distribution summary statistics.

Decomp. #l #b M |aM | MSE CC2
H 4 13 263 0.0135 0.7050 0.7155
E 4 12 258 0.0136 0.8581 0.5296
�0.5 1 32 282 0.0114 0.9582 0.3579
�1.0 3 13 254 0.0138 0.8589 0.5349
�1.5 1 1 343 0.0139 0.9382 0.4651
W�0.5 3 18 250 0.0135 0.8807 0.4999
W�1.0 3 16 263 0.0134 0.9043 0.4699
W�1.5 4 12 276 0.0124 0.7563 0.6601
A0.5 3 15 247 0.0146 0.8808 0.4953
A1.0 3 16 246 0.0141 0.8847 0.4897
A2.0 3 14 254 0.0135 0.8617 0.5313
N 1.0

0.900 3 17 247 0.0138 0.9030 0.4518
N 1.0

0.990 4 11 263 0.0128 0.8198 0.5771
N 1.0

0.999 1 4 298 0.0124 0.5945 0.8057
N 2.0

0.900 3 16 262 0.0119 0.8948 0.4782
N 2.0

0.990 3 16 246 0.0141 0.8884 0.4839
N 2.0

0.999 3 15 247 0.0146 0.8808 0.4953
WPDP 6 52 181 0.0131 0 1.0000

coefficient’s mantissa. Mean square errors (MSE) of recon-
struction were computed as a distortion measure in this fixed
compression rate experiment comparing the different decom-
positions (cf. Table 3). The results demonstrate different dis-

Table 3. Reconstruction MSE at bit rate r.

Decomp. r = 0 r = 1 r = 2 r = 3 r = 23
H 0.6251 0.2559 0.2162 0.1999 0.1913
E 0.5274 0.2739 0.2095 0.1932 0.1865
�0.5 0.5910 0.2820 0.2352 0.2203 0.2126
�1.0 0.5161 0.2659 0.1994 0.1810 0.1731
�1.5 0.5531 0.3618 0.3208 0.3092 0.3057
W�0.5 0.5044 0.2616 0.1955 0.1778 0.1697
W�1.0 0.5217 0.2695 0.2074 0.1877 0.1804
W�1.5 0.5475 0.2906 0.2295 0.2136 0.2053
A0.5 0.5270 0.2547 0.1996 0.1786 0.1717
A1.0 0.5273 0.2543 0.1990 0.1772 0.1703
A2.0 0.5198 0.2648 0.1977 0.1791 0.1709
N 1.0

0.900 0.5740 0.2487 0.1965 0.1769 0.1695
N 1.0

0.990 0.5195 0.2677 0.2119 0.1940 0.1865
N 1.0

0.999 0.6696 0.2987 0.2651 0.2515 0.2437
N 2.0

0.900 0.5263 0.2560 0.2033 0.1816 0.1735
N 2.0

0.990 0.5279 0.2557 0.1975 0.1788 0.1714
N 2.0

0.999 0.5270 0.2547 0.1996 0.1786 0.1717
WPDP 0.6265 0.1912 0.1430 0.1152 0.0985

tortion rankings of the decompositions at different bit rates.
In particular, WPDP produced significantly less distortion
at all but the lowest bit rate r = 0; and WPDB(A1.0) per-
formed better than WPDB(H) by as much as approximately
15% reduction in MSE.

7. DISCUSSION

Although tables of results have been shown consistently
throughout this report for the same example (the “tran-
sients” signal analyzed to level 5 with circularly-periodized
wavelets of order 8), analogous results were obtained for all
examples that were investigated (both the “transients” and
“greasy” signals with wavelets of various orders). These
results can be summarized as follows: the decompositions

WPDB(Madd), WPDB(Mnon), and WPDP produced time-
frequency distributions that varied dramatically and data-
compression distortions that varied more or less significantly
depending on the bit rate r.

Further research should extend these preliminary exper-
iments to investigate the statistical performance of these
methods for various classes of signals. Other non-additive
costs could be studied: eg., an idea suggested by S. Mallat2

would be to consider functionals constructed not from the
transform coefficients but rather from their density. More-
over, these methods should be examined more carefully in
the context of other schemes: eg., in the application of these
methods to the study of lossy compression, they could be
combined with more sophisticated data-compression and bit-
allocation methods such as that of Ramchandran and Vetterli
[9] rather than the simple uniform quantization studied here.
Finally, these methods can be extended from 1-D signals to
2-D images and other higher-dimensional signals.

In contrast to the approach of always using one selection
criterion (such as entropy) assumed “best” for all applica-
tions, exploring a versatile suite of criteria enables the inves-
tigator to determine the method most suited for his partic-
ular application. In fact, it may prove true that the various
information cost functions described here for selecting differ-
ent bases in discrete packet transforms may have a significant
impact on the subsequent data processing for that applica-
tion whether it be time-frequency analysis, signal extraction
from noise, signal reconstruction from compressed data, or
pattern recognition.
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