
      

SPEECH COMPRESSION WITH COSINE
AND WAVELET PACKET NEAR-BEST BASES
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ABSTRACT

Compression of speech from the TIMIT corpus was investi-
gated for several transform domain methods coding near-best
and best bases from cosine and wavelet packet transforms.
Satisficing (suboptimizing) search algorithms for selecting
near-best bases were compared with optimizing algorithms
for best bases in these adaptive tree-structured transforms.
Experiments were performed on several hundred seconds of
speech spoken by both male and female speakers from all di-
alect regions of the TIMIT corpus. Near-best bases provided
rate-distortion performance effectively as good as that of best
bases but without the additional computational penalty. Co-
sine packet bases outperformed wavelet packet bases.

1. INTRODUCTION

Satisficing search algorithms have been developed [1, 2, 3, 4]
for adaptively selecting near-best basis and near-best frame
decompositions in redundant tree-structured wavelet trans-
forms. Any of a variety of additive or non-additive informa-
tion cost functions can be used as the decision criterion for
comparing and selecting nodes when searching through the
tree. The algorithms are applicable to tree-structured trans-
forms generated by any kind of wavelet whether orthogonal,
biorthogonal, or non-orthogonal. These satisficing search al-
gorithms implement sub-optimizing rather than optimizing
principles, and acquire the important advantage of reduced
computational complexity with significant savings in mem-
ory, flops, and time. Despite the sub-optimal approach, top-
down tree-search algorithms with additive or non-additive
costs that yield near-best bases can be considered in many
practical situations better than bottom-up tree-search algo-
rithms with additive costs that yield best bases. Here “better
than” means that effectively the same level of performance
can be attained for a fraction of the computational work.
These principles and methods are demonstrated here in this
report on their application to the compression of speech from
the TIMIT corpus [5].

2. METHODS

A complete exposition of definitions, notation, and algo-
rithms for adaptive tree-structured wavelet transforms, infor-
mation cost functions, and basis selection methods for near-
best and best bases can be found elsewhere [1, 2, 3, 4]. Here
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in this report, only methods specific to experiments inves-
tigating lossy compression of speech will be detailed. We
wish to minimize the distortion D resulting between the re-
constructed estimate x̂ and the original signal x following
compression and coding of the transform domain packet co-
efficients. Compression can be achieved by thresholding the
N packets of the transform to the fixed compression rate
of M < N largest absolute-value packets and then quantiz-
ing and coding the remaining M packets. As explained in
Section 2.2., other experimental paradigms can also be in-
vestigated.

2.1. Quantization Coder

A uniform mid-tread quantizer with adaptive feed-forward
gain control [6] was modified to include some of the features of
the wavelet scalar quantizer (WSQ) characteristic of Bradley
and Brislawn [7]. Using their notation, let Zk be the bin
width of the zero bin for the kth subband, and Qk be the
uniform bin width of all other bins for the kth subband. Their
WSQ characteristic was simplified to the case of Qk and Zk

constant for all subbands k, thus enabling use of the same
values of Q and Z for all N transform coefficients considered
together as one collection instead of as separate subbands.
These bin widths Q and Z were adaptively computed as a
function of the maximum absolute value amplitude A, the
bit rate parameter β in bits per quantized coefficient, and a
thresholding parameter α as a fractional multiplier. Thus,

A = max
n

|a(n)|

Z = 2αA

Q = (1 − α)A/(2β−1 − 1 + C)

provided a quantizer characteristic that thresheld values
smaller than the fraction α of the maximum A and appropri-
ately “centered” the maximum A in its bin so as to minimize
its error. In this specification of the quantizer, the important
parameters are α and β, of which α determines the result-
ing number M of surviving non-zero transform coefficients in
each segment of length N , and β determines the precision of
the M surviving coefficients. Alternatively, M can be used as
the parameter which determines the zero bin width Z either
directly as

Z = 2|a(nM )| − ε

or indirectly via the fractional multiplier

α = |a(nM )/a(n1)| − ε = |a(nM )|/A− ε

where the index ni identifies the ith largest of the coefficients
{|a(n)| : 1 ≤ n ≤ N} sorted in decreasing absolute value or-
der, and ε is a tolerance taken as a small multiple of machine
precision.
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2.2. Rate-Distortion Curves

Speech signals (each an entire spoken sentence of several
seconds duration sampled at 16 kHz as 12 bit integers)
were scaled to zero-mean unit-variance signals in floating
point format and then segmented with a frame length of
N = 512 samples. There were approximately O(102) seg-
ments x per spoken sentence, with each segment contain-
ing sampled data from a time interval of 32 milliseconds
of speech. Defining the peak signal data value X in each
segment as X = maxn |x(n)|, the peak signal-to-noise ratio
(PSNR) distortion measure was computed in each segment
as

PSNR = 10 log10

NX2

‖x − x̂‖2

in decibels. These distortion measures were computed for
each segment of all signals in an experiment, averaged over all
segments from all signals, and reported as the mean segmen-
tal values with standard errors of the means (SEM). Rate-
distortion curves were then plotted as the mean segmental
PSNR versus the mean segmental number M of transform
coefficients that were quantized in the non-zero bins of width
Q.

The number M of surviving non-zero coefficients was deter-
mined by the quantization coder as a function of the thresh-
olding parameter α. For the comparison of different trans-
forms, several kinds of experiments were performed. In the
first kind called a “fixed α” experiment, the value of α was
held fixed at the same constant value for all transforms and all
segments with resulting variable M different for each trans-
form and each segment. In the second kind called a “fixed
M” experiment, the value of M was held fixed at the same
constant value for all transforms and all segments with result-
ing variable α different for each transform and each segment.
In the third kind called a “fixed f” experiment, the value of
M was used to determine α as in the fixed M experiment,
but instead of holding M fixed, M itself was determined by
the data compression number function N p

f [1] with p = 2 and
the fraction f held fixed for all transforms and all segments.
Thus, in the fixed f experiment, the energy of the surviv-
ing non-zero transform coefficients was constant for all trans-
forms and segments. Experiments were performed compar-
ing operational rate-distortion curves for adaptive pulse code
modulation (APCM), the discrete wavelet transform (DWT),
the wavelet packet transform (WPT), and the cosine packet
transform (CPT).

3. RESULTS

A fixed M experiment was performed on a total of 6968 seg-
ments from 80 sentences of type sx from 16 different TIMIT
speakers consisting of one male and one female speaker from
each of the eight dialect regions. Figure 1 displays results
from this experiment with β = 12 and M = 57, 161, 266,
357, 425. Both CPDD and WPDD were computed as the
near-best basis Decompositions selected by top-Down search
through the CPT and WPT, respectively. They both out-
performed the DWT, with the CPDD also surpassing the
WPDD, by several dB higher PSNR with less distortion for
given rates of compression measured by the number M of
surviving coefficients. Analogous results were obtained from
fixed α and fixed f experiments.

Table 1 lists interpolated values of M for given PSNR in
an experiment comparing top-Down near-best and bottom-
Up best basis decompositions. Using the selection criterion
C = G, WPDU outperformed WPDD at all compression

Figure 1. Mean segmental PSNR versus M for a fixed M ex-
periment. Curves, all with β = 12, are ordered from upper left
to lower right as CPDD, WPDD, DWT, and APCM. Points on
curves have the same abscissa: α was determined from fixed M
with values M = 57, 161, 266, 357, 425.

rates; however, CPDD actually outperformed CPDU at high
compression rates. This superior performance for a top-down
near-best basis over a bottom-up best basis occurred at high
rates of compression and distortion (low values of M and
PSNR) with the cost G known to perform better at low rates
(high values of M and PSNR). In contrast, CPDU did outper-
form CPDD at all compression rates with the cost E1 known
to perform well at all compression rates.

Since SEM values were typically 0.1 dB for the PSNR val-
ues, the differences in results between search methods S and
cost functions C were not as dramatic as the differences be-
tween transforms. For example, at M = 64, PSNR was 33.9
and 34.2 for CPD(D, E1) and CPD(U , E1) compared to 29.1
for DWT; while at PSNR = 30, M was 35.5 and 33.9 for
CPD(D, E1) and CPD(U , E1) compared to 70.8 for DWT.
Thus the additional improvement provided by the CPD with
bottom-up best basis relative to the CPD with top-down
near-best basis was negligible in comparison to the improve-

Table 1. Interpolated M for Given PSNR in a Fixed M Experi-
ment with Search S = D Top-Down or S = U Bottom-Up.

WPD(S,G) CPD(S,G) CPD(S, E1)
PSNR D U D U D U

30 63.4 53.0 40.8 43.8 35.5 33.9
35 111.5 97.8 84.2 88.0 74.1 70.8
40 171.1 154.6 142.5 144.3 135.4 129.5
45 235.7 217.4 209.2 207.5 209.1 200.7
50 299.1 280.3 277.7 272.3 285.2 275.2
55 356.9 338.7 342.1 333.8 354.8 344.4
60 406.6 390.5 397.5 388.5 410.3 401.9



    

ment already attained by the CPD over the DWT. More-
over, the mean segmental value of the mean tree depth level

L̂ = 1.94 for CPD(D, E1) was significantly smaller than the
fixed value of L = 6 required for CPD(U , E1). Thus, the small
increase in compression rates provided by the bottom-up best
basis relative to the top-down near-best basis did not justify
the large increase in computational complexity required to
obtain that improvement in performance.

4. DISCUSSION

To select a basis adaptively within a redundant tree-
structured wavelet transform, it is necessary to specify a
search path through the tree and a decision criterion by which
to compare and select branches of the tree. It is then pos-
sible to implement appropriate algorithms incorporating the
desired search path and selection criterion [4]. Experiments
described in this report demonstrated that the choice of in-
formation cost function used as selection criterion for find-
ing a basis decomposition may have a significant impact on
data compression especially when considering different design
constraints (such as high or low rates of compression with
corresponding high or low levels of distortion). Comparing
the various cost functions investigated, the �p and ln �2 func-
tionals (both additive costs) and the data compression area
(a non-additive cost) provided the best performance in gen-
eral. However, the choice of search path had an even greater
impact on performance than did the choice of cost func-
tion. Thus, the sub-optimal top-down tree search, instead
of optimal bottom-up tree search, significantly increased the
efficiency of computation without proportionately decreas-
ing the efficiency of compression of signals from a speech
database.

These results support the validity of the use of satisficing
principles and methods [4]. This general conclusion derived
from the speech compression experiments was based on com-
parisons of the mean segmental PSNR value as distortion
measure and either the fixed or mean segmental number M
of quantized non-zero coefficients as rate measure. Since De-
Vore et al [8] demonstrated an empirical relationship between
the number of coefficients and the number of bytes of com-
pressed data in the context of image compression, use of this
number has become a common rate measure for compression
studies in the wavelet literature. However, for the develop-
ment of an actual speech coder, entropy coding in addition to
quantization coding, actual bit rates rather than coefficient
counts, and psychoacoustic distortion measures rather than
PSNR should all be investigated [9, 10, 11].

Nevertheless, the use of the rate-distortion measures stud-
ied in this report does not invalidate the following key re-
sults and conclusions obtained with regard to data compres-
sion. First, for speech compression in particular, the CPT
(which incorporates a DCT) performed significantly better
than the WPT and the DWT. This result reconfirms from
another perspective the long established superiority of the
discrete cosine transform (relative to other transforms) due
to its close fit to the optimal Karhunen-Loeve transform [12].
Second, for data compression in general (as inferred from the
results on speech compression reported herein), the choice of
a decision criterion (information cost function) and basis se-
lection method (tree search path) may very well impact per-
formance and should be considered when designing a data
compression method intended for application to a particu-
lar class of data and type of compression. For example, a
decision criterion and tree search path appropriate for best

performance at high rates of compression and distortion may
not be appropriate at low rates of compression and distor-
tion, and vice versa. Third, despite the caveat of the second
conclusion, sub-optimizing near-best bases can be considered
“good enough” relative to optimizing best bases in most prac-
tical situations wherein computational complexity must also
be considered, especially in real-time signal processing appli-
cations.
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