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Abstract

Computational algorithms have been developed for
generating min-length max-flat FIR filter coefficients
for orthogonal and biorthogonal wavelets with vary-
ing degrees of asymmetry or symmetry. These
algorithms are based on spectral factorization of
the Daubechies polynomial with a combinatorial
search of root sets selected by a desired optimiza-
tion criterion. Daubechies filter families were sys-
tematized to include Real Orthogonal Least Asym-
metric (DROLA), Real Biorthogonal symmetric bal-
anced Most Regular (DRBMR), Complex Orthogonal
Least Asymmetric (DCOLA), and Complex Orthog-
onal Most Symmetric (DCOMS). Total phase nonlin-
earity was the criterion minimized to select the roots
for the DROLA, DCOLA, and DCOMS filters. Time-
domain regularity was used to select the roots for the
DRBMR filters (which have linear phase only). New
filters with distinguishing features are demonstrated
with examples.

1 Introduction

Compact maximally flat wavelets with varying de-
grees of asymmetry or symmetry can be derived by
spectral factorization of the Daubechies polynomial.
These wavelets, which have the maximal number N
of vanishing moments for their finite length, include
the original orthogonal “extremal-phase” and “least-
asymmetric” families as well as the biorthogonal
“spline-variations” family described by Daubechies
[1, 3, 2]. In this report, these families are extended
and systematized with automated algorithms that
permit consistent selection of alternative choices and
the identification of filters with optimal criteria.

Daubechies [3] defined the total nonlinear phase
as the criterion she used to select the spectral fac-
tors for the least-asymmetric family in the case of
real orthogonal wavelets. The definition of total non-
linear phase is extended here with a criterion used
to select the spectral factors for the least-asymmetric
and most-symmetric families in the case of complex
orthogonal wavelets. However, nonlinear phase does

not exist and cannot be used for the symmetric family
in the case of real biorthogonal wavelets. Therefore,
the combined criteria of maximally balanced filter
length and regularity for both analysis and synthe-
sis wavelets are used to select the spectral factors for
this symmetric family.

In all four cases (real orthogonal least-
asymmetric, real biorthogonal symmetric, complex
orthogonal least-asymmetric, and complex orthogo-
nal most-symmetric), a combinatorial search algo-
rithm incorporating a binomial subset selection [8]
is used to choose the spectral factors meeting the
required criteria defined for each family. Computa-
tional algorithms for the generation of the filter coef-
ficients and evaluation of their numerical properties
are presented together with representative examples
chosen for their distinguishing characteristics.

2 Methods

Wavelet filter coefficients were generated by a revision
of the combination of methods described previously
[8]. These methods incorporate in sequence the fol-
lowing steps: a) construct the Daubechies polynomi-
als [2, pg. 171, eq. 6.1.12], b) compute their zeros [6],
c) include the required zeros at z = −1 for the Prod-
uct filter P (z), d) factor P (z) to alternative Analysis
and Synthesis filters A(z) and S(z), e) label the roots
of these factors with a binary code and generate the
possible combinatorial subsets for these binary codes,
f) characterize each root subset and its correspond-
ing filter by the total phase nonlinearity or another
desired property such as the time-domain regularity,
g) search the root subsets to find the one with the
optimal value of the desired criterion, h) compare
the selected (primary) subset with its complemen-
tary subset to choose the one with minmax group
delay as the root subset for A(z) (applicable only in
orthogonal cases), and i) compute the wavelet coeffi-
cients from the scalet coefficients obtained from each
of A(z) and S(z).

In particular, if Na, Ns, and Np = Na + Ns
are the numbers of zeros at z = −1 for A(z), S(z),



and P (z), respectively, then the corresponding filters
have coefficient lengths La = Na + 4Ca + 2Ra + 1,
Ls = Ns+4Cs+2Rs+1, and Lp = 2Np−1 where Ca,
Cs, Ra, and Rs are the numbers of complex quadru-
plets and real duplets for A(z) and S(z). Moreover,
forNa andNs necessarily both odd or both even, then
Np is always even and N = Np/2 a whole integer de-
termines Cp = Ca +Cs and Rp = Ra +Rs according
to Cp = floor((N − 1)/2) and Rp = rem((N − 1)/2).
Thus, if Na and Ns are given, then Np and N yield
Cp and Rp split into {Ca, Ra} and {Cs, Rs} and the
roots are factored accordingly. For real coefficients,
both a root z and its conjugate z̄ must be paired. For
linear phase symmetric coefficients, both a root z and
its reciprocal z−1 must be paired.

Thus, in the biorthogonal symmetric case, each
complex quadruplet {z, z̄, z−1, z̄−1} and real duplet
{z, z−1 | z = x + iy, y = 0} must be assigned in
its entirety to either A(z) or S(z). In the real or-
thogonal case, each complex quadruplet is factored
into two conjugate pairs {z, z̄} and {z−1, z̄−1}, while
each real duplet is factored into two singlets {z} and
{z−1}, with one factor assigned to A(z) and the other
to S(z). The complex orthogonal case is analogous to
the real orthogonal case except the complex quadru-
plets are factored into reciprocal pairs {z, z−1} and
{z̄, z̄−1} instead of conjugate pairs. The orthogonal
cases require N = Na = Ns = Np/2, Ca = Cs =
Cp/2 and Ra = Rs = Rp/2 with L = La = Ls = 2N .
(Note that Rp can only equal 0 or 1. Therefore, in
the biorthogonal case, either {Ra = 0, Rs = 1} or
{Ra = 1, Rs = 0}. However, in the orthogonal case,
either {Ra = Rs = 0} or {Ra = Rs = 1/2} with 1/2
of a duplet denoting a singlet.) For the real orthogo-
nal least-asymmetric case, N can be any positive in-
teger, whereas complex orthogonal least-asymmetric
and most-symmetric require positiveN even and odd,
respectively.

With regard to the nonlinear phase contribution
for the complex conjugate pair {z, z̄}, Daubechies [2,
pg. 255] provided a derivation for the formula

arctan

[
(r2 − 1) sin(ω)

(r2 + 1) cos(ω)− 2r cos(α)

]
where her notation has been modified with use of
z = reiα. This method can be extended with an
analogous derivation for the complex reciprocal pair
{z, z−1} resulting in the formula

arctan

[
(r − r−1) sin(α)

(r + r−1) cos(α)− 2 cos(ω)

]
.

Total Phase NonLinearity, denoted pnl(H) for the
filter H(z), was computed as the discrete approxima-

tion of the L1[0, 2π] integral of the sum of the contri-
butions from the roots for H(z).

Time-Domain Regularity tdr(H) was computed
by the method of Rioul [5]. Discrete Time-Frequency
Uncertainty tfu(H) was computed by the method
of Haddad et al [4] and reported as the area of
the Heisenberg uncertainty box with width 2σn and
height 2σω which for an optimal filter H(z) with
σnσω = 0.5 yields tfu(H) = 2. Other numeri-
cal properties evaluated experimentally include the
Frequency-Domain Selectivity fds(H), Vanishing Mo-
ments Number vmn(H), orthogonality and biorthog-
onality errors, filter bank reconstruction error, and
others as described in the proposed standards [9, 10]
for reproducibility of wavelet transform algorithms.

Filters were named with identifying acronyms fol-
lowed by (La, Ls;Na, Ns) in the biorthogonal cases
and by (L;N) in the orthogonal cases. All results
reported here were computed with Version 4.4b1 of
WAVB3X Software [7]. A complete description of the
filter design and analysis algorithms will be provided
in the detailed final version [11] of this report.

3 Results

Daubechies Real Biorthogonal symmetric balanced
Most Regular (DRBMR) filters were selected by max-
imizing tdr(H) balanced between A(z) and S(z) sub-
ject to the constraint of lengths La and Ls also
balanced with La ≈ Ls as much as possible. In
fact, L = La = Ls = 2N is possible with N =
Na = Ns for {N = 1 + 4k | k = 1, 2, 3 . . .}.
Figure 1 and Table 1 present graphical and tabu-
lar results for DRBMR(10,10;5,5) which is the short-
est in this family. Daubechies Real Orthogonal
Least-Asymmetric (DROLA), Complex Orthogonal
Least-Asymmetric (DCOLA), and Complex Orthog-
onal Most-Symmetric (DCOMS) filters were each se-
lected by minimizing pnl(H). Table 2 lists the co-
efficients for the filter DROLA(26;13). It has the
value pnl(H) = 0.32, which is minimal for all H(z)
in the DROLA(L;N) family with L ≤ 40, N ≤ 20.
DROLA(26;13) is also the shortest in the family with
tdr(H) ≥ 4 and has an actual value of tdr(H) = 4.07;
its other values include fds(H) = 0.65 and tfu(H) =
3.41. Table 2 also lists the coefficients for the filter
DCOMS(22;11). Figure 2 displays the corresponding
graphical results including the numerical values for
pnl(H), tdr(H), fds(H), and tfu(H). Note that even
though the coefficients are symmetric, the phase is
neither linear nor symmetric as seen in the group de-
lay gd(H(ω)) plots. DCOMS(22;11) is the shortest
in the DCOMS(L;N) family with pnl(H) ≤ 1. Each



of these examples passed their respective orthogonal-
ity or biorthogonality tests as well as their perfect
reconstruction tests with relative errors ranging from
O(10−17) to O(10−15).

4 Discussion

Explicit computational algorithms have been devel-
oped for generating Daubechies compact maximally
flat wavelets with varying degrees of symmetry or
asymmetry. The terms “symmetric” and “asymmet-
ric” have been used in reference to the actual coef-
ficients, whereas the modifying superlatives “least”
and “most” have been used in reference to the phase
nonlinearity of the coefficients as follows: asymmet-
ric and symmetric coefficients with minimal phase
nonlinearity (pnl(H) > 0) have been called “least-
asymmetric” and “most-symmetric” respectively for
the real and complex orthogonal cases. The unmod-
ified term “symmetric” has been used for the real
biorthogonal case where symmetric coefficients with
linear phase (pnl(H) = 0) is possible.

Use of the automated algorithms results in the
identification of new and interesting wavelets. Ex-
amples have been demonstrated for the DROLA,
DRBMR, and DCOMS families (see Section 3). In
particular, for the DRBMR family, an analysis-
synthesis pair, each with N = 5 vanishing moments
and length L = 10 coefficients, but with differ-
ent time-domain regularities of tdr(A) = 1.213 and
tdr(S) = 2.321, has been identified as the shortest
of a sequence of pairs which occurs for N = 1 + 4k.
This new biorthogonal (10,10) filter pair can be com-
pared with the well-known (9,7) pair with regulari-
ties of 1.068 and 1.701. In the setting of image com-
pression with symmetric biorthogonal filters, the in-
creased regularity of the (10,10) pair should help re-
duce reconstruction artifacts.

These automated algorithms are valid for any or-
der N of wavelet and insure that the same consistent
choice of roots is always made in the computation of
the filter coefficients. They are also sufficiently flex-
ible for convenient generalization to the selection of
roots for filters optimized for criteria other than those
used here in this report. Complete tables of results
for the systematized collection of wavelet filters based
on a variety of optimization criteria and computable
by spectral factorization of the Daubechies polyno-
mial will be available in a forthcoming paper [11].
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Figure 1: Daubechies Real Biorthogonal symmetric balanced Most Regular DRBMR(10,10;5,5).
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Figure 2: Daubechies Complex Orthogonal Most Symmetric DCOMS(22;11).



Table 1: Biorthogonal Symmetric Most-Regular Example

n DRBMR(10,10;5,5)
analysis synthesis

0 2.691341891883906e-2 1.984354417393126e-2
1 -3.230335268005382e-2 2.381759849262512e-2
2 -2.411098166478756e-1 -2.325783991548418e-2
3 5.410042184654684e-2 1.455707467437648e-1
4 8.995061097490912e-1 5.411327316917106e-1
5 8.995061097490908e-1 5.411327316917104e-1
6 5.410042184654706e-2 1.455707467437649e-1
7 -2.411098166478756e-1 -2.325783991548425e-2
8 -3.230335268005382e-2 2.381759849262512e-2
9 2.691341891883906e-2 1.984354417393126e-2

Table 2: Orthogonal Least-Asymmetric and Most-Symmetric Examples

n DROLA(26;13) DCOMS(22;11)
real part imag part

0 7.042986690696272e-5 -2.843587691746741e-4 -5.619067497231089e-5
1 3.690537342323900e-5 3.943661457668242e-5 -1.995730997530724e-4
2 -7.213643851363769e-4 3.503067075329774e-3 -6.987157490609974e-6
3 4.132611988416842e-4 2.610443554801058e-4 1.162351282891239e-3
4 5.674853760123303e-3 -1.826877776716165e-2 3.762785603097234e-3
5 -1.492447274258628e-3 -2.986205433341184e-3 5.055616843377799e-3
6 -2.074968632552075e-2 5.069295483423355e-2 -1.130173637346818e-2
7 1.761829688064435e-2 -1.211437361767570e-2 -5.680614296894008e-2
8 9.292603089914724e-2 -1.204103902125976e-1 -7.712723996428508e-2
9 8.819757670420982e-3 1.474823589470471e-1 6.042637868194313e-3

10 -1.404900931136589e-1 6.591920251598299e-1 1.294744786413487e-1
11 1.102302230212641e-1 6.591920251598352e-1 1.294744786413491e-1
12 6.445643839011783e-1 1.474823589470424e-1 6.042637868193830e-3
13 6.957391505615532e-1 -1.204103902125941e-1 -7.712723996428485e-2
14 1.977048187712746e-1 -1.211437361767762e-2 -5.680614296894021e-2
15 -1.243624607515050e-1 5.069295483423437e-2 -1.130173637346811e-2
16 -5.975062771795706e-2 -2.986205433341443e-3 5.055616843377777e-3
17 1.386249743583920e-2 -1.826877776716159e-2 3.762785603097244e-3
18 -1.721164272630488e-2 2.610443554800936e-4 1.162351282891241e-3
19 -2.021676813339524e-2 3.503067075329776e-3 -6.987157490610306e-6
20 5.296359738721811e-3 3.943661457668191e-5 -1.995730997530723e-4
21 7.526225389968170e-3 -2.843587691746740e-4 -5.619067497231088e-5
22 -1.709428585295735e-4
23 -1.136063438927966e-3
24 -3.573862364871616e-5
25 6.820325263074346e-5


