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Abstract

Image sequences from functional neu-
roimaging experiments with 3-D magnetic
resonance scans of the human brain were
wavelet transformed using a variety of
orthogonal and biorthogonal wavelet fil-
ters with different treatments of the image
borders. Contrary to the expectation that
higher-order wavelets with more sophis-
ticated boundary treatments would yield
better compression, simple Haar wavelets
without any boundary treatment pro-
vided the best compression throughout
the rate-distortion performance curve.∗
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1 Introduction

Biorthogonal wavelet filters [1] with convolu-
tions incorporating symmetric reflection at the
image borders [2] have achieved significant suc-
cess in important applications such as the FBI fin-
gerprint image compression standard [3] and con-
tinue to receive attention in imaging studies [4].
The development of boundary treatments with or-
thogonal wavelet filters [5] and the continuing use
of orthogonal cubic spline wavelets [6] in imaging
applications provide other examples of methods
that might be termed “sophisticated” when com-
pared with simple Haar wavelets which preclude
the need for any boundary treatment.

Indeed, the popularity of the more sophisti-
cated methods might lead one to think that anal-
ysis with simple Haar wavelets is no longer nec-
essary or appropriate. However, this report pro-

vides an important counter-example in the appli-
cation field of functional neuroimaging with mag-
netic resonance scans where Haar wavelets eas-
ily outperformed the more sophisticated alterna-
tives. Lower levels of distortion for fixed rates of
data compression were achieved throughout most
of the rate-distortion performance curve for Haar
wavelets when compared with the alternatives.

2 Methods

Wavelet filter families are named and in-
dexed here according to the conventions estab-
lished in [7]. The extended families Daubechies
Real Biorthogonal Least Uncertain (DRBLU) and
Daubechies Real Orthogonal Least Asymmetric
(DROLA) include the lower-order filters origi-
nally defined in [1] and [8], respectively. For the
treatment of boundaries, the convolution types
“SRS” and “BAF” implement the symmetrically
reflected signal algorithm of Brislawn [2] and
the boundary adjusted filter algorithm of Cohen
Daubechies and Vial [5], respectively. Experimen-
tal results reported here were computed with Ver-
sion 4.5a2 of the WAVB3X Software Library [9]
running in Version 5.1.0 of the MATLAB tech-
nical computing environment [10] on a Toshiba
Tecra 720CDT.

Functional magnetic resonance image (FMRI)
sequences from functional neuroimaging experi-
ments were kindly provided by Dr. Greg Brown
of the UCSD Department of Psychiatry. These
4-D brain scan sequences consisted of T > 100
time samples of 3-D spatial volumes discretized
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at 64 × 64 × 8 voxel resolution (considered to be
8 slices of 64 × 64 pixel images). For the exam-
ple results shown here, there were T = 146 time
points in the sequence.

The experiment for results reported in Table 1
and Figure 1 was performed using a 2 level 2-D
discrete wavelet transform (DWT) on the image
slices I[j, k] with the indicated filter and convolu-
tion. Estimates Î[j, k] were reconstructed with a
fraction 0 < f ≤ 1 of the most significant wavelet
transform coefficients. Signal-to-noise ratios were
computed as

SNR = 10 log 10

∑
j,k |I[j, k]|2

∑
j,k |I[j, k] − Î[j, k]|2

with results averaged over all images and reported
as mean decibels (dB).

The experiment reported in Figure 2 was per-
formed analogously using a 2 level 3-D DWT on
the spatial volumes. For the density and distri-
bution of 3-D transform coefficients, the proba-
bility density function (PDF) was estimated with
a 25-point probability mass function (25-bin his-
togram), and the cumulative distribution function
(CDF) was estimated with a 101-point quantile
curve (101 percentiles at 0.00, 0.01, . . . , 1.00).

3 Results

Table 1 presents results expressed as mean
SNR values for a compression experiment measur-
ing distortion as a function of 4 fixed compression
rates at f = 0.1, 0.2, 0.4, and 0.8 which yield a
performance range from low to high SNR. Stan-
dard deviations were approximately 1% of means
at the highest SNR values, and 2-4% at the lowest
SNR values.

The real orthogonal Haar filters, which do not
require any special boundary treatment in the im-
plementation of the convolution, performed bet-
ter than the next closest filter-convolution com-
bination, DROLA(8;4) filters with CPS convolu-
tion. The difference was approximately 0.5 dB
better at f = 0.8 and f = 0.4, 0.1 dB better
at f = 0.2, and 0.1 dB worse only at the lowest
rate f = 0.1 where the discrepancy was consid-
ered insignificant because it was the same as the
standard deviations.

At the lowest order of wavelet, all families re-
duce to the Haar wavelet. Thus, DRBLU(2,2;1,1)
and DROLA(2;1) are equivalent to Haar. Fig-
ure 1 displays the rate-distortion performance
curves for the DRBLU(Na, Ns;Ka, Ks) family
with Ka = Ks ≡ K for K = 1, . . . , 5. Error bars
in these curves correspond to ±1 standard devi-
ation. Again, the Haar wavelet (top-most curve)
performs best throughout the range of the rate-
distortion curves.

Finally, Figure 2 displays estimates of the
PDF and CDF for the 3-D DWT coefficients com-
puted with the Haar filter averaged over all spa-
tial volumes in the time sequence. The dashed
curve with error bars on the points for the PDF
is plotted as the mean probabilities at the mid-
points of the histogram bins for the transform co-
efficient values. The solid curve for the CDF is
plotted as the cumulative probabilities (or quan-
tile levels) at the coefficient quantile values. Stan-
dardized skewness and kurtosis coefficients for the
distribution were calculated to be 3.03 and 32.5,
respectively, with a longer tail to the right and
significant leptokurtosis. Mean SNR for the 3-D
compression was 5.04, 8.92, 17.1, and 35.7 dB at
the 4 compression rates of f = 0.1, 0.2, 0.4, and
0.8, respectively. Standard deviations were ≤ 0.2
dB at all 4 rates.

4 Conclusion

Results from rate-distortion analyses of com-
pression experiments with imaging sequences
from functional brain scans demonstrated that no
benefit could be obtained with any of the higher-
order wavelets or more sophisticated boundary
treatments when compared with the simple Haar
wavelet. Since the Haar wavelet does not require
any special boundary treatment, it lends itself
readily to compression in the third spatial dimen-
sion which has a resolution of only 8 grid points
when compared with the first 2 dimensions for the
image slices which have a resolution grid of 64×64.
Moreover, because the Haar filter has only 2 filter
taps, data compression with the 3-D Haar DWT
provides the most efficient method from the per-
spective of computational complexity. This initial
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study has demonstrated clear advantages of the
Haar wavelet for compression of FMRI sequences.
However, future research must establish whether
or not the compression preserves the fidelity of
critical information. In other words, can spatial
regions of “functional activity” be detected in the
time sequence with sufficient accuracy both before
and after the data compression and reconstruction
transforms?
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Table 1: Mean SNR in dB for 2-D DWT Compression of FMRI Sequence

Filter and Convolution f = 0.1 f = 0.2 f = 0.4 f = 0.8
DRBLU(5,3;2,2) SRS 3.9046 7.5107 15.7507 34.3805
DRBLU(8,4;3,3) SRS 2.7493 5.5690 13.2720 31.9230
DRBLU(9,7;4,4) SRS 4.4189 8.1333 16.1666 34.8983
DRBLU(10,10;5,5) SRS 2.8034 6.2204 13.7847 32.4608
DROLA(2;1)=Haar — 4.4952 8.4525 16.7452 35.7085
DROLA(4;2) BAF 4.4851 8.2178 16.0479 34.9107
DROLA(6;3) BAF 4.5104 8.1591 15.8193 34.6766
DROLA(8;4) BAF 4.5297 8.2442 15.9418 34.9638
DROLA(4;2) CPS 4.4772 8.2473 16.0893 35.0742
DROLA(6;3) CPS 4.5505 8.2769 16.0779 35.0327
DROLA(8;4) CPS 4.5847 8.3692 16.1918 35.1858
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DRBLU Compression of Images from FMRI Time Sequence

Figure 1: Mean SNR for 2-D DRBLU DWT Compression of FMRI Sequence.
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Figure 2: PDF and CDF for 3-D Haar DWT Coefficients for FMRI Sequence.
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