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Abstract

Previous simulation experiments for
the comparison of wavelet shrinkage de-
noising methods have used fixed sig-
nal classes defined by adding instances
of noise to a single test signal. New
simulation experiments are reported here
with randomized signal classes defined
by adding instances of noise to instances
of randomized test signals. As expected,
significantly greater variability in the per-
formance of the denoising methods was
observed. Statistically valid comparisons
must be conducted with respect to this
variability. Use of randomized, rather
than fixed, signal classes should yield
more realistic and meaningful results.∗
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1 Introduction

Denoising by thresholding in the wavelet do-
main has been developed principally by Donoho
et al. [1, 2, 3, 4]. In [1], they introduced
RiskShrink with the minimax threshold, Vis-
uShrink with the universal threshold, and dis-
cussed both hard and soft thresholds in a gen-
eral context that included ideal denoising in both
the wavelet and Fourier domains. In [2], they
introduced SureShrink with the SURE thresh-
old, WaveJS with the James-Stein threshold,
and LPJS also with the James-Stein threshold
but in the Fourier domain instead of the wavelet
domain. The procedure LPJS was renamed
FourJS (analogous to WaveJS ) for consistency

of mnemonics by Taswell [5], who also labelled the
various denoising procedures respectively ‘RIS’,
‘VIS’, ‘IWD’, ‘IFD’, ‘SUR’, ‘WJS’, and ‘FJS’ for
use as abbreviations.

The first Monte Carlo simulation experiment
comparing any of these denoising procedures was
performed by Taswell and published in the article
by Donoho and Johnstone [1, Table 4, page 448;
Acknowledgements, page 450]. Various other ex-
periments have since been performed by other au-
thors (see discussion and references in [4]). Most
of this work has examined four test signals orig-
inally called ‘Doppler’, ‘HeaviSine’, ‘Blocks’, and
‘Bumps’ by Donoho and Johnstone [1]. The lat-
ter was renamed more descriptively as ‘Spires’ by
Taswell [5]. All of the experiments on these test
signals, including the most recent experiments [5],
examined only these fixed test signals rather than
defined classes of randomized test signals.

To address this deficiency in the design of the
simulation experiments, new classes of random-
ized test signals are introduced here, and used in
new experiments which provide a more appropri-
ate evaluation of the performance of the denoising
methods. For example, instead of using just one
instance of Spires with the particular values of the
peak height, width, and location parameters orig-
inally defined in [1], multiple instances of Random
Spires are used in the experiments with random-
ized values of the peak height, width, and location
parameters. The use of such randomized signal
classes in the experiments results in a more real-
istic assessment of the variability of performance
that can be expected for the different denoising
methods.

∗Paper 296-214.
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2 Methods

Randomized signal classes, called ‘Random
Blocks’, ‘Random Spires’, and ‘Random Heavi-
Sine’, were defined to generate signals analogous
to the original ‘Blocks’, ‘Spires’, and ‘HeaviSine’.
Figure 1 displays the original nonrandomized ver-
sions in the top row of subplots, and one instance
each of the randomized versions in the bottom
row of subplots. Table 1 lists the mathematical
formulae for the test signal classes. These formu-
lae are valid for both the randomized and orig-
inal nonrandomized versions with the appropri-
ate choice of parameters. Table 2 lists the MAT-
LAB pseudocode expressions for the set of param-
eters chosen for the randomized classes used in
the experiments reported here. Signals from the
signal classes were corrupted with additive Gaus-
sian noise (SNR = 10), and then denoised with
the various denoising methods. Performance of
the denoising procedures on the signal classes was
studied as a function of sample size n = 2J for
J = 8, . . . , 14. The signal-to-noise ratio (SNR)
was used as the objective figure of merit for com-
paring the original signal S[n] with the denoised
estimate 
S[n], computed as

SNR = 10 log10

∑

n |S[n]|2
∑

n |S[n]− 
S[n]|2

with results averaged over all signal instances and
reported in decibels (dB) with means, standard
deviations, and coefficients of variation. Experi-
mental results reported here were computed with
Version 4.6a1 of theWAVB3X Software Library [6]
running in Version 5.3.0 of the MATLAB techni-
cal computing environment.

3 Results

Figure 2 presents results expressed as mean
±1 standard deviation of the SNR values for all
trials. As expected, the coefficients of variation
(ratios of standard deviation to mean) were sig-
nificantly larger for the randomized signal classes
when compared with the original fixed signal
classes. Table 3 demonstrates that the increase
was approximately 2 � 10 fold for VIS. Similar re-
sults were observed for the other methods. Such
large differences necessarily impact the statistical

validity of comparisons of the methods. For exam-
ple, when comparing performance of the methods
on the signal classes, the error bars (represent-
ing ± 1 standard deviation) do not overlap for
Blocks but do overlap for Random Blocks, im-
plying that any differences between the methods
are not statistically significant for this randomized
signal class under the experimental conditions in-
vestigated. However, the method VIS does per-
form significantly worse than the other methods
for Random Spires. The relatively poor perfor-
mance of VIS also affects the class Random Blocks
albeit not to the same degree of significance.

4 Conclusion

New randomized signal classes have been in-
troduced to facilitate the statistically valid com-
parison of the performance of wavelet shrinkage
denoising methods. Use of a fixed signal class
can result in misleading inferences from invalid
comparisons. Careful attention should be focused
on the use of appropriately defined signal classes
when evaluating denoising methods in simulation
experiments. These experiments can then be used
to compare the performance of various denois-
ing methods. When there is no statistically sig-
nificant difference in the methods’ performance
on the defined signal class, other criteria such as
computational complexity should be used to se-
lect a preferred method. Moreover, if a particular
method can be demonstrated to perform signifi-
cantly worse than other competing methods, such
as shown here for VIS on Random Spires, it would
be prudent to exclude it from further considera-
tion for use as a denoising method for the signal
class and experimental conditions investigated.
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Table 1: Mathematical Formulae for Signal Classes

Name Function Kernel Parameters

Blocks f(t) =
∑M

m=1 hmK(t− pm) K(s) = (sgn(s) + 1)/2 M,hm, pm
Spires f(t) =

∑M
m=1 hmK((t− pm)/wm) K(s) = (|s|+ 1)−4 M,hm, pm, wm

HeaviSine f(t) = h1 sin(p1πt) +
∑M

m=2 hmK(t− pm) K(s) = sgn(s) M,hm, pm

Table 2: Pseudocode Expressions for Parameters Used in Randomized Versions

Name hm pm wm m

Blocks 5*sign(rand(1,11)-0.5).*rand(1,11) sort(rand(1,11)) 1, . . . , 11
Spires 5*rand(1,11) sort(rand(1,11)) 0.05*rand(1,11) 1, . . . , 11

HeaviSine 4 4 1
2*sign(rand(1,2)-0.5).*rand(1,2) sort(rand(1,2)) 2,3

Table 3: VIS Denoising: Coefficients of Variation for SNR Values.

Blocks Spires HeaviSine
J Fixed Random Fixed Random Fixed Random

8 2.8501e-002 1.1718e-001 7.9789e-002 1.0950e-001 5.2748e-002 6.5265e-002
9 3.4988e-002 1.3192e-001 5.5483e-002 8.5289e-002 3.5886e-002 5.7628e-002
10 2.3885e-002 1.3916e-001 3.5810e-002 7.8460e-002 3.0110e-002 6.2710e-002
11 1.8842e-002 1.4474e-001 1.9456e-002 5.7327e-002 2.3419e-002 6.8886e-002
12 1.5847e-002 1.2818e-001 1.6622e-002 5.0351e-002 2.4020e-002 5.3679e-002
13 1.0527e-002 8.9286e-002 1.0516e-002 4.1403e-002 1.2165e-002 7.0534e-002
14 6.7975e-003 1.1607e-001 7.8823e-003 5.1193e-002 1.4964e-002 1.1089e-001
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Test Signals
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Figure 1: Standardized Test Signals.

Error of Denoised Test Signals (Varying L = max, E = SNR2)
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Figure 2: Mean SNR for Denoised Test Signals.
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