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Abstract—Satisficing search algorithms are proposed for adap-
tively selecting near-best basis and near-best frame decompo-
sitions in redundant tree-structured wavelet transforms. Any
of a variety of additive or non-additive information cost func-
tions can be used as the decision criterion for comparing and
selecting nodes when searching through the tree. The algo-
rithms are applicable to tree-structured transforms generated
by any kind of wavelet whether orthogonal, biorthogonal, or
non-orthogonal. These satisficing search algorithms implement
sub-optimizing rather than optimizing principles, and acquire
the important advantage of reduced computational complexity
with significant savings in memory, flops, and time. Despite
the sub-optimal approach, top-down tree-search algorithms with
additive or non-additive costs that yield near-best bases can be
considered, in certain important and practical situations, better
than bottom-up tree-search algorithms with additive costs that
yield best bases. Here “better than” means that effectively the
same level of performance can be attained for a relative fraction
of the computational work. Experimental results comparing the
various information cost functions and basis selection methods
are demonstrated for both data compression of real speech and
time-frequency analysis of artificial transients.
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I. Introduction

Coifman and Wickerhauser [2] presented an algorithm
for the selection of the best basis representation of a
signal within a collection of orthonormal basis represen-
tations. They defined redundant transforms, including
wavelet packet transforms and local trigonometric trans-
forms, that generate these basis libraries, each of which
can be structured and searched as a full balanced binary
tree. To select a particular basis within a given library (a
particular sub-tree of a tree), they defined the best basis
to be that which minimized an information cost function
C and chose the −`2 ln `2 functional (related to the Shan-
non entropy) as their archetype for C. The optimality of
the best basis algorithm requires the key restriction of ad-
ditivity for C. The computational cost of the best basis
algorithm is O(LN) where L = blog2Nc is the number of
levels or depth of the transform or tree, and N is the length
of the signal.
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Mallat and Zhang [3] developed a greedy algorithm for
the selection of the best matching pursuit decomposition
of a signal into time-frequency packets from a large col-
lection of such packet waveforms. The matching pursuit
decomposition can be performed either with or without
backprojection [3], [4] resulting in either orthogonal or non-
orthogonal decompositions. The computational cost of the
non-orthogonal matching pursuit algorithm is O(MLN)
where M <= N is the number of packets selected. The
matching pursuit algorithm with its local optimization
properties guarantees a more compact signal decomposition
(typically M << N) than that of the best basis algorithm
with its global optimization properties. However, this more
compact signal representation can be obtained only at the
expense of more computation in which although M << N ,
nevertheless 1 << M , such that the additional computa-
tional cost of the matching pursuit algorithm is significant
relative to that of the best basis algorithm.

Hybrid algorithms combining the principles of both best
basis and matching pursuit decompositions have since been
developed. Coifman and Wickerhauser [5] proposed an
algorithm which they called adaptive waveform analysis
or adaptive waveform denoising. Here the computational
complexity is O(KLN) where K is the number of denois-
ing iterations. Since typically K < M , adaptive waveform
denoising has also been described as a “fast approximate
version of the matching pursuit procedure” [6, page 418].
Another new “meta-algorithm” [7, page 8] was described
by Saito [8]. His algorithm incorporates a best basis al-
gorithm to select the best basis within each of multiple li-
braries and then selects the final decomposition as the best
basis of the best library. Here the complexity is O(JLN)
where J is the number of search libraries. In all of these
algorithms, the actual complexity depends on the particu-
lar implementations necessitated by the particular search
libraries as well as search paths and search decision crite-
ria. Thus, the complexity estimates summarized here are
approximate lower bounds.

To varying degrees, all of these algorithms trade the mu-
tually exclusive optimal design goals of efficiency of al-
gorithmic computation versus efficiency of signal repre-
sentation (ie, compression). Using the original Coifman-
Wickerhauser and Mallat-Zhang algorithms as prototypes,
the design trade-off raises several questions: Can the
compression efficiency of the Mallat-Zhang matching pur-
suit decomposition be attained or approached by an al-
gorithm with the computation efficiency of the Coifman-
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Wickerhauser best basis decomposition? Which informa-
tion cost functions and basis selection methods should be
used to choose a basis in an adaptive tree-structured trans-
form? Can compromise algorithms be developed with in-
termediate or adjustable rates of efficiency of compression
and computation as required by the application? Under
what circumstances is it relevant and necessary to perform
additional computation in order to obtain more compres-
sion? Where is the transition point of diminishing returns
in the range of choices from the fixed standard wavelet
transform to the adaptive wavelet packet transforms with
decompositions selected by complete basis searches and
matching pursuit searches?

In an initial attempt to explore these questions, Taswell
proposed near-best bases with non-additive costs [9] as an
alternative to best bases with additive costs [2]. In sub-
sequent work, Taswell proposed several more basis selec-
tion algorithms and decision criteria [10]. In particular,
top-down and bottom-up tree searches were distinguished.
Moreover, the statistical performance of the various basis
and pursuit decompositions was investigated with Monte
Carlo experiments on test signals with additive white noise
[10], [11]. Although some of the individual components of
these algorithms had been considered previously by others
(such as the various cost functions discussed by Wicker-
hauser [12]), actual experimental results from this previ-
ous work were limited to Coifman-Wickerhauser “entropy”
selected best bases [2]. As a consequence, the results pre-
sented by Taswell [9], [10], [13], [11] provided the first sys-
tematic experimental investigation of both search paths
and decision criteria. General conclusions from these ex-
periments can be summarized with the following remarks:
If the standard wavelet transform is considered to provide
insufficient compression and the wavelet packet matching
pursuit decomposition to require excessive computation,
then the wavelet packet complete basis decomposition can
be considered an effective compromise. Moreover, if the
wavelet packet complete basis decomposition is accepted as
the method of choice for the given problem, then a near-
best basis selected by a top-down tree search (with either
additive or non-additive costs) is just as good as a best basis
selected by a bottom-up tree search (with additive costs),
and can be obtained at a relative fraction of the computa-
tional requirements measured in memory, flops, and time.

In this report, I demonstrate the effectiveness of these
near-best bases for a real-world class of signals. In partic-
ular, I apply these methods to the coding of speech signals
from a large speech database containing sentences spoken
in all major American dialects [14]. However, developing
a state-of-the-art speech coder is not the objective of this
work. Rather it is simply to demonstrate the performance
advantages of near-best bases relative to best bases in the
context of a real-world application. As in previous reports
[10], [11], the work is pragmatic and rooted in the empiric
satisficing philosophies of Simon [15], [16] and Berkson [17].
This empirical approach contrasts with much of the statis-
tically oriented wavelet literature which focuses on theo-
retical models of stochastic processes and/or asymptotic

properties of statistical estimators related to wavelet anal-
ysis and methods.

Nevertheless, according to Berkson [17], “Statistics, how-
ever you define it, is very much earthbound and deals with
real observable data; what is statistically true must be lit-
erally verifiably true for such data.” Referring to theorems
of aymptotic analysis, he believed that “if these theorems
were valid for large samples, they must refer to infinitely
large samples, which is to say, samples so large that no
statistician ever gets them, at least not on this unpleasant
earth.” As a consequence, he advocated the use of ac-
tual experiments to evaluate the performance of statistical
methods on small samples. It is this pragmatic empiri-
cal approach of Berkson that is adopted as the foundation
for the work on satisficing searches for near-best bases pre-
sented in this report. Its relation to the satisficing search of
Simon is discussed in detail in Section VII. To emphasize
with further clarity the pragmatic nature of the work, all
methods and algorithms are presented and discussed using
matrix data structures and generic pseudocode typical of
high-level languages such as MATLAB, with explicit names
of functions being those of the software library WavBox 4
[18]. Since the function input and output arguments and
function dependencies are not arbitrary for the different al-
gorithms investigated here, the explicit description of the
algorithms with the particular example of WavBox 4 serves
to clarify the distinctions between the various alternatives.

In the following Sections II–IV, the mathematical defi-
nitions, notations, and computational algorithms for adap-
tive tree-structured wavelet transforms and the selection of
their best basis and near-best basis decompositions are de-
scribed in detail for the data structures (Section II on Dis-
crete Packet Transforms), decision criteria (Section III on
Information Cost Functions), and search paths (Section IV
on Basis Selection Methods). Case studies demonstrat-
ing the application of these methods to the time-frequency
analysis of artificial transients and chirps are presented in
Section V, while population studies demonstrating their
application to the compression of speech data are reported
with statistical performance results in Section VI. In the
final Section VII, the various methods and results are re-
viewed and compared in the context of the satisficing per-
spective for which the development attributed to Simon
[15], [16] is also reviewed in greater depth.

II. Discrete Packet Transforms

We consider vectors x,y ∈ IRN and orthonormal trans-
formation matrix B ∈ IRN×N . Then y = Bx and C(y)
are respectively the coefficient vector and information cost
scalar for the signal x in the transform coordinate system
represented by the basis B. We wish to find a basis B for
which C(y) is minimal, subject possibly to some constraint
on the search S for the basis B. To do so, we require var-
ious data structures for representing information relevant
to the transforms and selected decompositions. Thus, a
discrete packet transform (DPT) is considered to be any
multiresolution transform, such as a wavelet packet trans-
form (WPT), cosine packet transform (CPT), or other local
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trigonometric transform, that yields a table of transform
coefficients which can be organized as a balanced binary
tree. The transform table is called a discrete packet table
Ptable with levels l and blocks b of the table correspond-
ing to levels l and branches b of the tree. For the sake
of mnemonics, the term branch is often used here instead
of the more customary term node. However, the conven-
tional term node is also used synonymously in this report.
Thus, the root node at level 0 and the terminal nodes at
level L are considered to be the top and bottom of of the
full balanced tree corresponding, respectively, to the finest
and coarsest time resolutions of the data for tree-structured
wavelet transforms, and to the finest and coarsest frequency
resolutions of the data for tree-structured trigonometric
transforms.

There are 2l blocks on each level and thus K = 2(L+1)−1
blocks in the entire table. Within each block b on level l,
there are 2−lN cells c where N is the length of the original
signal x ∈ IRN . Each coefficient in the packet table Ptable

can be specified as the 4-vector [a, l, b, c] where a is the
packet’s amplitude and l, b, and c are its level, block, and
cell indices. For wavelet transforms, these level, block, and
cell indices also correspond to scale, frequency, and time in-
dices; and for trigonometric transforms, they correspond to
scale, time, and frequency indices. Thus, as members of the
generic class of DPTs, the tree-structured wavelet trans-
forms such as the WPT and the tree-structured trigono-
metric transforms such as the CPT can be viewed as duals
with regard to time and frequency.

Now, if the signal x ∈ IRN has N samples to be trans-
formed, then a DPT to a depth of L levels yields a packet
table matrix Ptable ∈ IRN×(L+1) with a total of (L + 1)N
coefficients. A particular basis within this redundant rep-
resentation can be specified with the basis selection tree
S ∈ χK where each of the K variables χk ∈ {0, 1} is an in-

dicator variable for the selection of the k
th

block/branch of

the table/tree. The redundant table Ptable ∈ IRN×(L+1) can
then be converted to the non-redundant basis Pbasis ∈ IRN .
In WavBox 4 [18], the function dpt2dpb (discrete packet ta-
ble to discrete packet basis) performs this restructuring of
the data via the mapping Pbasis = dpt2dpb(Ptable,S).

To compare various decompositions, it is also convenient
to convert discrete packet tables Ptable or bases Pbasis to
discrete packet lists Plist representing the selected decom-
positions. In WavBox 4, the functions dpt2dpl and dpb2dpl
perform this restructuring of the data via the mappings
Plist = dpt2dpl(Ptable,S) and Plist = dpb2dpl(Pbasis,S)
where again the functions are named as the abbreviations
for their input and output data structures analogous to
the naming convention for dpt2dpb. Each list contains M
packets specified as row 4-vectors [ai, li, bi, ci] with rows
i = 1, ...,M ordered so that |a1| ≥ · · · ≥ |aM |. To study a
complete basis decomposition, we must examine the entire
list where M = N . However, we may also study subsets of
the list where M < N .

Thus, there are four data structures presented here:
Ptable ∈ IRN×(L+1), Pbasis ∈ IRN , Plist ∈ IRM×4, and
S ∈ χK . Since packet tables Ptable and selection trees S

are implemented respectively as matrices and vectors, ta-
ble blocks and corresponding tree branches indexed by (l, b)
are respectively submatrices and scalars. They are denoted
Ptable
lb ≡ Ptable

ilb,jlb
and Slb ≡ Sklb where for l ∈ {0, 1, . . . , L}

and b ∈ {0, 1, . . . , 2l − 1}, the row and column vector in-
dices ilb, jlb are for level l block b in a table matrix, and the
scalar index klb is for level l branch b in a tree vector. The
same holds true analogously for packet bases Pbasis

lb ≡ Pbasis
ilb

with the proviso that not all levels l and blocks b of Ptable

are stored in Pbasis since Pbasis is not redundant by its def-
inition as a basis. In fact, Pbasis contains only those blocks
b on levels l for which Slb = 1. Correct manipulation of
coefficients stored in Pbasis requires using the level-block in-
dexing information encoded as logical values in S. Finally,
since the ith packet in Plist is denoted Plist

i ≡ [ai, li, bi, ci],
it should be clear from context that Pi is from the list Plist

while Plb is from the table Ptable.

III. Information Cost Functions

We consider data vectors y ∈ IR2−lN for one parent block

and z1, z2 ∈ IR2−(l+1)N for its two children blocks in a dis-
crete packet table represented by a binary tree. We wish
to compare their information costs by some measure used
as a decision criterion when searching the table/tree to se-
lect a particular basis. In the following definitions, we will
assume l = 0 which is the case for the root node.

A. Additive Costs and Comparisons

Additive costs were originally intended for use with the
best bases of Coifman and Wickerhauser [2].

Definition: A cost functional Cadd from vectors y ∈ IRN

to IR is called an additive information cost function if
Cadd(0) = 0 and Cadd(y) =

∑
i Cadd(yi).

Definition: The inequality Cadd(y) ≤ Cadd(z1, z2) be-

tween vectors y ∈ IRN and z1, z2 ∈ IRN/2 is called an
additive information cost comparision if

Cadd(z1, z2) ≡ Cadd(z1 ⊕ z2) = Cadd(z1) + Cadd(z2).

We can define several additive cost functions as

Cadd
1 (y) = Ep(y) =

{ ∑
i |yi|p for 0 < p < 2

−∑i |yi|p for 2 < p <∞
Cadd

2 (y) = F(y) = −
∑
i:yi 6=0

y2
i ln y2

i

Cadd
3 (y) = G(y) =

∑
i:yi 6=0

ln y2
i

which are respectively the `p functional related to energy
and the `p norm, the−`2 ln `2 functional related to Shannon
entropy, and the ln `2 functional related to Gauss-Markov
entropy1 (cf. [12]).

B. Non-Additive Costs and Comparisons

Non-additive costs were proposed for use with the near-
best bases of Taswell [9].

1More precisely, the Shannon entropy of a Gauss-Markov process.
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Definition: A cost functional Cnon from vectors y ∈ IRN

to IR is called a non-additive information cost function if it
serves as a decision criterion for a basis selection algorithm
and it is not an additive information cost function Cadd.

Definition: The inequality Cnon(y) ≤ Cnon(z1, z2) be-

tween vectors y ∈ IRN and z1, z2 ∈ IRN/2 is called a non-
additive information cost comparision if

Cnon(z1, z2) ≡ Cnon(z1 ⊕ z2) 6= Cnon(z1) + Cnon(z2).

We can construct several examples of non-additive cost
functions from the probability density function for the data
coefficients. In the discrete vector context, a probability
mass function (pmf) can be estimated with simple his-
togram binning methods in conjunction with various rules
for the number of bins. Thus let

JS = 1 + log2N

JD = 1 + log2N + log2(1 + γ̂
√
N/6)

JTS =
3
√

2N

be the number of bins J according, respectively, to the
Sturges’, Doane’s, and Terrell-Scott’s rules [19, pages 48
and 73], where γ̂ is an estimate of the standardized skew-
ness coefficient. Given the number of bins J and the sample
data interval [a, b] where a = mini yi and b = maxi yi, then
the bin width is w = (b−a)/J . Using the bin width w, the
frequency fj for the jth bin is defined as

fj = #{yi | yi ≤ a+ jw} −
j−1∑
k=1

fk

and the probabilities pj are calculated from the frequen-
cies fj simply as pj = fj/N . Let pS, pD, and pTS denote
the pmf vectors p when estimated with JS, JD, and JTS,
respectively.

Now the Shannon entropy HS [20] for a finite scheme
{(Aj, pj) | 1 ≤ j ≤ J} of events Aj with probabilities pj is
defined as

HS(p) = −
J∑
j=1

pj log2 pj

where the probabilistic events (Aj, pj) are identified with
the fractions of coefficients located within the histogram
bin intervals. Therefore, three non-additive cost functions
can be defined as

Cnon
1 (y) = HS(pS(y))

Cnon
2 (y) = HS(pD(y))

Cnon
3 (y) = HS(pTS(y)).

Another non-additive cost function is the Coifman-
Wickerhauser entropy HCW [2]. This functional is also the
Shannon entropy of a finite scheme but one where the prob-
abilistic events (Aj, pj) are identified with the normalized
energies rather than probabilities of the data coefficients:

Cnon
4 (y) = HCW(y) = −

N∑
i=1

|yi|2
‖y‖22

ln
|yi|2
‖y‖22

.

We can construct additional examples of Cnon with the
sorted vector [y(k)] where

y(1) = |yi1 | ≥ · · · ≥ y(N) = |yiN |

so that y(k) = |yik | is the kth largest absolute value element

of the vector [yi]. The decreasing-absolute-value sorted vec-
tor [y(k)] suffices to define the weak-`p norm (cf. [21]). How-

ever, constructing the decreasingly sorted, powered, and
cumulatively summed vector [vk(y, p)], and renormalized
vector [uk(y, p)] where

uk(y, p) =
vk(y, p)

vN (y, p)
with vk(y, p) =

k∑
i=1

yp(i)

makes it convenient to define several other Cnon. (Note
that 0 ≤ uk(y, p) ≤ 1 because of the normalization.) Thus,
with [y(k)] and [uk(y, p)] obtained from [yi], define the non-
additive information cost functions

Cnon
5 (y) = W`p(y) = max

k
k(1/p)y(k)

Cnon
6 (y) = N p

f (y) = arg min
k
|uk(y, p)− f |

Cnon
7 (y) = Ap(y) = N −

∑
k

uk(y, p)

which are respectively the weak-`p norm, data compression
number, and data compression area [9].

Here the power p and fraction f are parameters2 chosen
from the intervals 0 < p ≤ 2 and 0 < f < 1. The functions
N p
f and Ap were designed to yield scalar values that could

be meaningfully minimized in a basis search algorithm and
were named according to their natural or geometric inter-
pretation. For example, choosing p = 2 and f = .99 and
then using N 2

.99 yields the minimum number of vector co-
efficients containing 99% of the energy of the entire vector.
The data compression number N p

f and area Ap can be con-

trasted by observing that the number N p
f is a local measure

with varying “sensitivity” to different intervals of the uk
versus k curve whereas the area Ap is a global measure of
the entire curve. The minimum values attainable represent
maximum compression. They are readily computed for a
Kronecker delta vector δ with unit energy: N p

f (δ) = 1 and
Ap(δ) = 0.

IV. Basis Selection Methods

Given a particular DPT computed to depth level L for
a signal x of length N = 2L, there are O(2N ) basis decom-
positions yi = Bix resulting from the library of orthogonal
transforms Bi ∈ B generated by the redundant DPT [2].
We wish to select one of these pairs (Bi,yi) by searching
the tree-structured packet table with a given information
cost functional C, and by minimizing the cost C(yi) over
yi subject possibly to some constraint on the search S re-
stricting the number of yi examined.

2The use of the parameter p for power and f for fraction should not be
confused with the use of the vectors p and [pj ] for probabilities and f and
[fj ] for frequencies.
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A. Best and Near-Best Bases

Coifman and Wickerhauser defined the best basis for ad-
ditive costs [2]. Subsequently, Taswell defined the near-best
basis for non-additive costs [9], and then more generally for
both non-additive and additive costs [10]. Here we review
definitions for both best and near-best bases.

Definition: The best basis relative to Cadd for a vector
x in a library B of bases is that B for which Cadd(Bx) is
minimal.

Definition: The near-best basis relative to C (either Cnon

or Cadd) for a vector x in a library B of bases is that
B ∈ B∗ ⊂ B for which C(Bx) is minimal subject to the
constraints of the search within the subset B∗ defined by
the search type.

Here B∗ is the proper subset of library bases that are
searched by the selection algorithm. Searching the subset
B∗ defined by the Coifman-Wickerhauser bottom-up tree
search (cf. Section IV-B) yields the optimal or best ba-
sis within the entire library B for an additive information
cost function Cadd (cf. proof [2, page 717]). However, since
B∗ 6= B, this search is not exhaustive and cannot guarantee
the selection of a best basis for a non-additive information
cost function Cnon. Moreover, there are many other search
types, including top-down tree searches (cf. Section IV-B),
for which neither additive nor non-additive costs can guar-
antee the selection of a best basis. For this reason as well
as empirical evidence suggesting nearly equivalent perfor-
mance, a basis selected by either a non-additive or additive
cost subject to the constraint of a search within a proper
subset B∗ of the library B is called a near-best basis.3

B. Bottom-Up and Top-Down Tree Searches

Both the best basis of Coifman and Wickerhauser [2] and
the near-best basis of Taswell [9] were originally defined for
bottom-up tree searches. However, the near-best basis with
additive or non-additive costs permits either a bottom-up
or top-down search [10], [13] through the discrete packet
table to find the basis selection tree. Searches subject to
other patterns of constraint are possible as well. The vari-
ous search methods are denoted S generically, with S = U ,
S = D, and S = L indicating the particular examples of
bottom-Up, top-Down, and fixed-Level search types. The
latter case provides the simplest search type since there
are only L+1 bases examined corresponding to those with
all nodes constrained to the same level l of the table and
tree. Such a fixed-level basis is also known as a Fourier-
like basis because it yields a decomposition corresponding
to a tiling of the time-frequency plane with fixed resolu-
tion time-frequency cells in a manner analogous to that of
a short-time windowed Fourier transform.

We begin with a description of search algorithms appro-
priate for additive costs Cadd. To exploit the algorithmic
modularity enabled by the independence of such additive
costs, it is necessary to build two trees for each packet table

3If B∗ is chosen to be that represented by the Coifman-Wickerhauser
search and if C is chosen to be an additive cost, then the near-best basis
is also a best basis.

P: the additive information cost tree Cadd and the basis
selection tree S. In WavBox 4, the functions dpt2ict and
ict2bst perform these mappings from Discrete Packet Table
to Information Cost Tree and from Information Cost Tree
to Basis Selection Tree, respectively, as

Cadd = dpt2ict(P, Cadd)

S = ict2bst(Cadd,S)

with the notational convention that cost functions C and
selection methods S are denoted in script font while cost
trees C and selection trees S are denoted in bold font. This
modularity permits 1) the output of various cost trees Cadd

for the same packet table P input to dpt2ict with vari-
ous choices of cost functions Cadd as second argument, and
2) the output of various selection trees S for the same cost
tree Cadd input to ict2bst with various choices of selection
methods S as second argument.

Now we focus on the bottom-up search U with additive
costs Cadd yielding best bases. With Cadd

lb = Cadd(Plb) al-
ready computed for all l and b, and Slb initialized to 1 for
all b on level L and to 0 elsewhere, then the comparison
and selection step of the best basis search can be expressed
as

if Cadd
lb ≤ Cadd

l+1,2b + Cadd
l+1,2b+1

then Slb = 1
else Cadd

lb = Cadd
l+1,2b + Cadd

l+1,2b+1

and the search is performed breadth-first and bottom-up
through the tree. Retaining only the top-most selected
branches of S by resetting any lower selected branches to 0
(ie.,pruning descendant lines) yields the best basis selection
tree S with Slb = 1 indicating a selected branch.

To obtain the near-best basis search, we perform the
same bottom-up search U with the same sequence of com-
parisons of basis blocks’ information costs as above but
we replace the additive cost Cadd with the non-additive
cost Cnon. This substitution of Cnon for Cadd invalidates the
modular independence separating the computation of costs
from the selection of bases described above. It is therefore
necessary to combine the basis selection with the cost com-
putation. So with Cnon

lb = Cnon(Plb) already computed for
all b on level L, and Slb initialized to 1 for all b on level L
and to 0 elsewhere, then the comparison and selection step
of the near-best basis search can be expressed as

if Cnon(Plb) ≤ Cnon(Pl+1,2b ⊕Pl+1,2b+1)
then Slb = 1
else Plb = Pl+1,2b ⊕Pl+1,2b+1

and the search is performed breadth-first and bottom-up
through the tree with pruning of descendant lines as de-
scribed above for the best basis search.

In WavBox 4, the function dpt2bst performs this map-
ping from Discrete Packet Table to Basis Selection Tree
as

[S,C] = dpt2bst(P,S, C)
which allows for the greater generality of accepting as input
the various search methods S and cost functions C. The
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additional computational cost of dpt2bst with S = U and
C = Cnon relative to dpt2ict and ict2bst with S = U and
C = Cadd is essentially just the cost of the sorting for those
examples (W`p, N p

f , and Ap) of Cnon which require it as
described in Section III-B. Although not detailed here, it
is possible to implement this algorithm without repeating
for the same coefficients the required sorts and powers.

The best and near-best bases as described above are se-
lected by breadth-first bottom-up searches through the ta-
ble and tree. These searches can be implemented as the
additive or non-additive cost comparison and basis selec-
tion step inside 1) an inner for-loop for the table blocks and
tree branches and 2) an outer for-loop for the levels. There-
fore, they have been named bottom-up additive best and
non-additive near-best bases with selection method S = U
to distinguish them from top-down additive near-best and
non-additive near-best bases with S = D. These top-down
bases are selected in the opposite direction by depth-first
top-down searches with the search terminated as soon as
the cost of the children blocks or branches is greater than
the cost of the parent block or branch. They can be im-
plemented as the cost comparison and basis selection step
within a recursion controlled by a last-in first-out stack.
Table I provides a summary of these alternative selection
algorithms.

TABLE I

Tree search algorithms for adaptively selecting bases in

redundant discrete packet transforms.

Discrete Packet Decomposition Notation
(Bottom-Up Additive) Best DPD(U , Cadd)
Bottom-Up Non-Additive Near-Best DPD(U , Cnon)
Top-Down Additive Near-Best DPD(D, Cadd)
Top-Down Non-Additive Near-Best DPD(D, Cnon)

To demonstrate an example with pseudocode, we con-
sider a typical application of the most general pur-
pose function dpt2bst which performs the mapping S =
dpt2bst(P,S, C). This function is considered the most gen-
eral because its implementation makes it valid for all search
methods and cost functions. The pseudocode example will
also use the function wpt for the Wavelet Packet Transform,
and dcnum for the Data Compression NUMber, which is
the mathematical function N p

f (x) described above in Sec-
tion III-B with default values of p = 2 and f = 0.99 for the
parameters. Then, using these functions, the sequence of
program statements

Ptable = wpt(x)
S = dpt2bst(Ptable,S, C)
Plist = dpt2dpl(Ptable,S)
M = dcnum(Plist(1 : N, 1))
Plist = Plist(1 : M, 1 : 4)

yields a wavelet packet decomposition returned as a packet
list truncated to the M largest absolute value packet co-
efficients constituting 99% of the energy of the transform

(and of the original data if the transform mapping is or-
thonormal). The truncated packet list can now be used
for display in tiling plots of the time-frequency plane or in
subsequent data processing. While valid for near-best ba-
sis decompositions in general, this approach fails to exploit
the advantages which can be potentially gained in partic-
ular for top-down tree searches with S = D.

Therefore, we wish to design an appropriate algorithm
specialized for top-down tree searches with S = D oper-
ating via Pbasis instead of the more general algorithm op-
erating via Ptable as described above. Naming this func-
tion wpdd for Wavelet Packet Decomposition by top-Down
search, then the pseudocode segment

[Pbasis,S] = wpdd(x)
Plist = dpb2dpl(Pbasis,S)
M = dcnum(Plist(1 : N, 1))
Plist = Plist(1 : M, 1 : 4)

incorporating wpdd replaces the more general one incor-
porating wpt and dpt2bst separately as described above.
It is also possible to combine the two functions dpb2dpl
and dcnum so that the M -packet truncated list is returned
directly from the combined function. The demonstrated
method of first returning the complete N -packet list from
the function dpb2dpl , returning M from the function dc-
num, and then truncating the N -packet list to an M -
packet list requires significantly more memory. This mem-
ory requirement is not necessary and can be eliminated
with use of the combined function if packets Plist

M+1, . . . ,P
list
N

are never used in subsequent processing. Alternatively, in
many practical data processing applications, Plist would
never be generated. Instead, Pbasis would be processed di-
rectly by thresholding or other functions.

Since top-down searches do not necessarily examine the
entire table and tree, they cannot guarantee finding an opti-
mal basis. However, they enable the possibility of perform-
ing the cost computation and basis selection simultaneously
with generation of the packet table transform coefficients
as described above in the example. Because the algorithm
runs unidirectionally downward through the levels of the
table and tree, it can be performed essentially “in place”,
thus significantly reducing memory storage requirements
from O((L+ 1)N) for Ptable in wpt and dpt2bst to O(2N)
for Pbasis and a temporary copy in wpdd . Furthermore, be-
cause the algorithm does not necessarily require that the
entire table and tree be generated and searched, it can be
performed with significant savings in machine operations
and computing time. This reduction in computational cost
corresponds to a number L̂ representing the number of lev-
els of the transform that need to be computed.

The number L̂ is estimated by summing over all levels
the fraction of computed blocks to total blocks on each
level. Computed blocks include all ancestral blocks from
the root block to the parental blocks above the selected
blocks, the selected blocks themselves, and the two chil-
dren blocks below each selected block (unless the selected
block is already at the maximum level L). This estimate

yields L̂ as a rational (not necessarily integer) number that
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ranges between 1 and L. Thus, the “in place” algorithm re-
duces computational costs from approximately O(LN) for

Ptable in wpt and dpt2bst to O(L̂N) for Pbasis in wpdd . The

amount by which L̂ ≤ L is dependent on the basis family,
selection criterion, and signal data class. However, the re-
duction in memory storage requirements from O((L+1)N)
to O(2N) is independent of these factors. Nevertheless,
for both issues of memory storage and computational cost,
the savings for higher dimensional signals can be significant
even for small values of N and small differences between L̂
and L.

The pseudocode example and discussion above have fo-
cused on the WPT but of course similar remarks apply to
the CPT and other DPTs. In the remainder of this paper,
the integrated algorithms wpdd and cpdd refer to Wavelet
and Cosine Packet Decompositions by top-Down search.
Analogously, wpdu and cpdu refer to Wavelet and Cosine
Packet Decompositions by bottom-Up search.

V. Time-Frequency Analysis

For the comparison of time-frequency decompositions re-
sulting from various choices of C with the same adaptive
wavelet packet decomposition algorithm wpdu, all Plist were
truncated to M packets with M = N 2

0.99 different for each
Plist. Histograms of these variable-M equal-energy packet
lists were then computed for total energy, cells, and blocks
per individual level l (results not shown, however, cf. [9]
for similar results). These histograms demonstrated wide
variations in the resulting distributions of energies, cell-
numbers, and block-numbers across levels for the different
decompositions. Because the distribution of selected blocks
across levels of a packet decomposition corresponds to the
distribution of sizes and shapes of tiles in a time-frequency
tiling plot of cell energies, the observed numerical differ-
ences in histograms were also visually apparent in these
time-frequency plots.

These differences do impact time-frequency analysis. To
demonstrate this effect with an explicit example, a simple
test signal of length N = 512 was constructed as the sum
of four equal energy impulses: two time impulses at 0.2 and
0.8 and two frequency impulses at 0.2 and 0.8 for time and
frequency axes both normalized from 0 to 1. This test sig-
nal was designed to be symmetric in time and frequency.
It was wavelet packet transformed to level L = 5 using
Daubechies’ orthogonal least asymmetric wavelets with fil-
ter length 8 [22] and a convolution version with boundary-
adjusted wavelets at the ends of the interval [23]. Figures 1
and 2 display the wavelet packet transform and two dif-
ferent adaptive wavelet packet decompositions of the test
signal. Both decompositions were selected by bottom-up
tree searches with S = U . However, they differed in the
cost function C used as selection criterion. The additive
cost Cadd = F , the −`2 ln `2 functional equivalent to the
Coifman-Wickerhauser entropy, selected the root node with
335 coefficients containing 99% of the energy. This decom-
position revealed only the time impulses, and not the fre-
quency impulses, in the time-frequency tiling plot. The
non-additive cost Cnon = A1, the data compression area,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

4

3

2

1

0

WPT of Test Signal with TF Impulses

Le
ve

l

Time/Frequency

Fig. 1. Wavelet packet transform of test signal with symmetric time-
frequency impulses. Horizontal and vertical dashed lines demarcate
levels and blocks, respectively.

selected a sub-tree with 21 nodes and 173 coefficients con-
taining 99% of the energy. This decomposition revealed
both time and frequency impulses in the time-frequency
tiling plot. This example demonstrates that the original
“entropy” cost function proposed by Coifman and Wick-
erhauser may not be appropriate for the time-frequency
analysis of all classes of signals.

For a systematic comparison of the time-frequency anal-
yses resulting from decompositions computed with each of
the different S and C, a subjective opinion score was as-
signed to the visual appearance of the time-frequency tiling
plots. Table II lists scores for decompositions obtained
from the WPT and CPT computed with the same trans-
form parameters described in Section VI-B and used for
the data compression experiments. The subjective opinion
scores were determined by qualitative characteristics: 0 for
failure to reveal the known test pattern as in the example
of CWE in Figure 2, 1 for revealing the known test pattern
but with additional interference patterns as in the example
of DCA in Figure 2, and 2–4 for revealing the known test
pattern without additional interference patterns and with
increasingly better joint time-frequency resolution and ap-
pearance matched to the known test pattern. For the sim-
ple test patterns examined here, this subjective measure
was found to be more informative than the objective cross-
correlation measure used in [9].

The scores listed in Table II demonstrate that even with
decompositions selected with the bottom-up search S = U ,
the choice of information cost function C can dramatically
impact the visual appearance of time-frequency tiling plots
for a signal with sudden transients but less so for a sig-
nal with more even distributions of energies in the time-
frequency plane. Furthermore, decompositions selected
with the top-down search S = D can fail consistently re-
gardless of choice of cost function C unless the basis library
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Fig. 2. Adaptive wavelet packet decompositions of symmetric time-
frequency impulse test signal: on the left – tree and tiling plots
for Cadd = F , the −`2 ln `2 functional equivalent to the Coifman-
Wickerhauser entropy (CWE); and on the right – tree and tiling plots
for Cnon = A1, the data compression area (DCA).

TABLE II

Subjective Opinion Scores for Time-Frequency Tiling Plots.

A: Symmetric Time-Frequency Impulses; B: Linear Chirp.

C WPDU CPDU WPDD CPDD
A B A B A B A B

G 1 2 4 3 0 2 0 3
F 0 1 4 4 0 1 0 4
E0.5 1 2 4 3 0 1 0 3
E1.0 2 2 4 4 0 1 0 3
E1.5 3 1 4 4 0 1 0 4
E3.0 0 1 0 4 0 1 0 4
E4.0 0 1 0 4 0 1 0 4
E5.0 0 1 0 4 0 1 0 4
W`0.5 1 2 4 3 0 1 4 2
W`1.0 3 1 4 4 0 1 0 4
W`2.0 1 1 0 2 0 1 1 2
A0.5 1 3 4 2 0 2 4 2
A1.0 1 2 4 3 0 1 4 3
A2.0 3 1 4 4 0 1 0 4
N 1
.900 1 3 4 2 0 2 4 2
N 1
.990 1 3 2 2 0 2 0 2
N 1
.999 1 2 2 2 0 1 0 0
N 2
.900 2 2 4 3 0 1 4 3
N 2
.990 1 3 4 3 0 2 4 3
N 2
.999 2 3 4 2 0 2 0 2

HS(pS) 0 2 0 3 0 1 0 3
HS(pD) 0 3 4 3 0 2 0 3
HS(pTS) 0 2 0 2 0 1 0 3
HCW 0 1 4 4 0 1 0 4

is preselected to match the signal class (cf. scores for co-
sine packets and the CPDD versus wavelet packets and the
WPDD in Table II). However, these individual case stud-
ies are presented here in the spirit of “counter-examples”
in this section for time-frequency analysis. This approach
stands in contrast to the population studies and statistical
performance results presented in the next section for data
compression.

VI. Data Compression

For experiments investigating lossy compression of data,
we wish to minimize the distortion D resulting between the
reconstructed estimate x̂ and the original signal x following
compression and coding of the discrete packet decomposi-
tion Plist. Compression can be achieved by truncating the
N packets in the list to the M < N largest absolute-value
packets and then quantizing and coding the remaining M
packets. Standard methods of coding data include scalar
and vector quantization [24], [25]. The quantization and
coding of the M packets remaining after truncation of the
list applies only to the amplitudes a and not to the level-
l, block-b, and cell-c indices which must be coded without
loss of information. Since the (l, b, c)-index information
is retained for each packet retained in this compression
scheme, it is possible to consider other coding schemes for
the packet amplitudes a such as the parameterized-model
coding proposed by Taswell [10], [13]. Alternatively, a
quantization coder can be applied directly to Pbasis instead
of Plist. However, in this case, the order of the coefficients
must be maintained since there is no (l, b, c)-index infor-
mation retained as side information. It is this approach
that is used in the following data compression experiments
on speech signals from the TIMIT speech corpus. This
database of continuous speech was originally developed by
Texas Instruments (TI), Massachusetts Institute of Tech-
nology (MIT), and SRI International [14].

A. Quantization Coder

A uniform mid-tread quantizer with adaptive feed-
forward gain control [26] was modified to include some of
the features of the wavelet scalar quantizer (WSQ) charac-
teristic of Bradley and Brislawn [27]. Using their notation,
let Zk be the bin width of the zero bin for the kth subband,
and Qk be the uniform bin width of all other bins for the kth

subband. Then quantization encoding of the kth subband
amplitudes ak(n) returns the integer codes

pk(n) =


d ak(n)+Zk/2

Qk
e − 1 ak(n) < −Zk/2

b ak(n)−Zk/2
Qk

c+ 1 ak(n) > Zk/2

0 −Zk/2 ≤ ak(n) ≤ Zk/2
and decoding returns the amplitude estimates

âk(n) =

 (pk(n) + C)Qk − Zk/2 pk(n) < 0
(pk(n)− C)Qk + Zk/2 pk(n) > 0

0 pk(n) = 0

where 0 < C < 1 is a parameter that determines the lo-
cation of the reconstruction estimates within the bins. For
C = 0.5, these values correspond to the bins’ midpoints.
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The Bradley-Brislawn WSQ characteristic was simpli-
fied to the case of Qk and Zk constant for all subbands k,
thus enabling use of the same values of Q and Z for all N
transform coefficients considered together as one collection
instead of as separate subbands. These bin widths Q and
Z were adaptively computed as a function of the maximum
absolute value amplitude A, the bit rate parameter β in bits
per quantized coefficient, and a thresholding parameter α
as a fractional multiplier. Thus,

A = max
n
|a(n)|

Z = 2αA

Q = (1− α)A/(2β−1 − 1 + C)

provided a quantizer characteristic that thresheld values
smaller than the fraction α of the maximum A and appro-
priately “centered” the maximum A in its bin so as to min-
imize its error. In this specification of the quantizer, the
important parameters are α and β, of which α determines
the resulting number M of surviving non-zero transform
coefficients in each segment of length N , and β determines
the precision of the M surviving coefficients. Alternatively,
M can be used as the parameter which determines the zero
bin width Z either directly as

Z = 2|a(nM )| − ε

or indirectly via the fractional multiplier

α = |a(nM )/a(n1)| − ε = |a(nM )|/A− ε

where the index ni identifies the ith largest of the coeffi-
cients {|a(n)| : 1 ≤ n ≤ N} sorted in decreasing absolute
value order, and ε is a tolerance taken as a small multiple
of machine precision.

B. Rate-Distortion Curves

Speech signals (each an entire spoken sentence of sev-
eral seconds duration sampled at 16 kHz as 12 bit integers)
were scaled to zero-mean unit-variance signals in floating
point format and then segmented with a frame length of
N = 512 samples. There were approximately O(102) seg-
ments x per spoken sentence, with each segment contain-
ing sampled data from a time interval of 32 milliseconds
of speech. Defining the peak signal data value X in each
segment as

X = max
n
|x(n)|

(analogous to the maximum transform coefficient value
A = maxn |a(n)|), the signal-to-noise ratio (SNR) and peak
signal-to-noise ratio (PSNR) distortion measures were com-
puted in each segment as

SNR = 10 log10

‖x‖2/N
‖x− x̂‖2/N = 10 log10

‖x‖2
‖x− x̂‖2

PSNR = 10 log10

X2

‖x− x̂‖2/N = 10 log10

NX2

‖x− x̂‖2

in decibels. These distortion measures were computed for
each segment of all signals in an experiment, averaged over

all segments from all signals, and reported as the mean seg-
mental values with standard errors of the means (SEM).
Rate-distortion curves were then plotted as the mean seg-
mental SNR or PSNR versus the mean segmental number
M of transform coefficients that were quantized in the non-
zero bins of width Q. (In each segment, there were N −M
coefficients discarded in the zero bin of width Z.)

The number M of surviving non-zero coefficients was
determined by the quantization coder as a function of the
thresholding parameter α. For the comparison of different
transforms, several kinds of experiments were performed.
In the first kind called a “fixed α” experiment, the value of
α was held fixed at the same constant value for all trans-
forms and all segments with resulting variable M different
for each transform and each segment. In the second kind
called a “fixed M” experiment, the value of M was held
fixed at the same constant value for all transforms and all
segments with resulting variable α different for each trans-
form and each segment. In the third kind called a “fixed
f” experiment, the value of M was used to determine α as
in the fixed M experiment, but instead of holding M fixed,
M itself was determined by the data compression number
function N p

f with p = 2 and the fraction f held fixed for
all transforms and all segments. Thus, in the fixed f ex-
periment, the energy of the surviving non-zero transform
coefficients was constant for all transforms and segments.

Experiments were performed comparing operational
rate-distortion curves for adaptive pulse code modula-
tion (APCM), the discrete wavelet transform (DWT) also
known as the fast wavelet transform, the wavelet packet
transform (WPT), and the cosine packet transform (CPT).
All transforms were computed to depth level L = 6.
Wavelet and wavelet packet transforms were computed
with circular-periodized wavelets [28] of order 7 (with
length 14) derived from Daubechies’ orthogonal least asym-
metric family [22]. These transform parameters of depth
level, filter type, filter order, and convolution version were
found to be optimal for the DWT as determined by pre-
liminary experiments. Cosine packet transforms were com-
puted with Wickerhauser’s symmetric sine bell of order 1
and the type-iv discrete cosine transform [12]. Again as de-
termined by preliminary experiments and as expected by
theory, higher-order bells (with increasing approximation
to a rectangular window function) performed worse than
the smooth bell of order 1. All experiments were done in
MATLAB 4.2c.1 running on an ALR Evolution V computer
with a 60 MHz Pentium processor.

C. Experimental Results

Experiment 1 was performed as a fixed α experiment on
a total of 1385 segments from 20 sentences of type sx from
4 different TIMIT speakers consisting of one male and one
female speaker from each of two dialect regions. Figures 3
and 4 display results from this experiment in which both
α and β were varied over the Cartesian grid (α, β) with
α = .128, .064, .032, .016, .008, .004, .002, .001, 0 and
β = 4, 6, 8, 10, 12, 14, 16. This approach produced the
family of operational rate-distortion curves shown for each
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Fig. 3. Mean segmental PSNR versus M for a fixed α experiment. Each
panel displays a family of 7 curves; each curve corresponds to a fixed
value of β ordered from bottom to top as β = 4, 6, 8, . . . , 16; there are
9 points along each curve corresponding to the values of α ordered
from left to right as α = .128, .064, . . . , .002, .001, 0.

Fig. 4. Mean segmental PSNR versus M for a fixed α experiment.
Curves, all with β = 16, are ordered from upper left to lower right as
CPDD, WPDD, DWT, and APCM. Points on curves do not have
the same abscissa: M was determined from fixed α with values
α = .128, .064, . . . , .002, .001, 0.

Fig. 5. Mean segmental PSNR versus M for a fixed M experiment.
Curves, all with β = 12, are ordered from upper left to lower right
as CPDD, WPDD, DWT, and APCM. Points on curves have the
same abscissa: α was determined from fixed M with values M =
57, 161, 266, 357, 425.

transform in the panels of Figure 3 and shown for all the
transforms together in the same panel in Figure 4. Both
CPDD and WPDD were computed as the DPD(D,G) of
the CPT and WPT, respectively. They both outperformed
the DWT by several dB higher PSNR with less distortion
for given rates of compression measured by the number M
of surviving coefficients.

Experiment 2 was performed as a fixed M experiment
on a total of 6968 segments from 80 sentences of type sx

from 16 different TIMIT speakers consisting of one male
and one female speaker from each of eight dialect regions.
Figure 5 displays results from this experiment with β = 12
and M = 57, 161, 266, 357, 425. As in Experiment 1, both
CPDD and WPDD were computed with the DPD(D,G) of
the CPT and WPT, respectively. Again, both of the top-
down near-best basis decompositions, CPDD and WPDD,
outperformed the DWT, with the CPDD surpassing the
WPDD. Table III presents interpolated values of PSNR in
dB obtained by cubic spline interpolation at specified val-
ues of M . The CPDD and WPDD provided, respectively,
as much as a 4 dB and 3 dB gain in PSNR values relative to
those for the DWT. Table IV presents the inverse picture
with values of M interpolated for given values of PSNR.
From this perspective, the CPDD and WPDD provided as
much as a 42% and 12% improvement in compression rate
over that for the DWT as measured by the number M of
coefficients quantized in each segment of length N = 512.

Experiment 3 was performed as a fixed f experiment
on the same speech data examined in Experiment 2. Ta-
ble V lists the values of the mean segmental data com-
pression number N 2

f for the different transforms for fixed
f with values of f = 0.9, 0.99, 0.999, 0.9999, 0.9999. By
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TABLE III

Interpolated PSNR for Given M in a Fixed M Experiment.

M APCM DWT WPDD CPDD
64 15.85 29.10 29.97 32.84
96 17.39 32.24 33.34 35.95

128 18.90 35.04 36.36 38.76
160 20.43 37.56 39.11 41.35
192 21.99 39.90 41.68 43.78
224 23.61 42.13 44.14 46.11
256 25.33 44.33 46.58 48.41
288 27.18 46.59 49.08 50.74
320 29.26 48.99 51.71 53.18
352 31.75 51.65 54.55 55.82
384 34.80 54.67 57.66 58.75
416 38.57 58.16 61.11 62.04

TABLE IV

Interpolated M for Given PSNR in a Fixed M Experiment.

PSNR APCM DWT WPDD CPDD
30 329.4 70.8 63.4 40.8
35 386.9 126.1 111.5 84.2
40 426.4 194.1 171.1 142.5
45 451.7 265.6 235.7 209.2
50 466.5 331.9 299.1 277.7
55 474.4 388.2 356.9 342.1
60 479.2 430.4 406.6 397.5

this measure, the CPDD and WPDD provided better sig-
nal energy compaction than did the DWT by as much as
20% and 9%, respectively. Figure 6 displays the opera-
tional rate-distortion curves for this fixed f experiment,
while Tables VI and VII list interpolated values of PSNR
and M analogous to those for Experiment 2. Again, the
CPDD and WPDD provided, respectively, as much as a
4.2 and 3.5 dB gain in PSNR and as much as a 38% and
9% improvement in compression number M relative to the
values for the DWT.

In all of these experiments, standard errors of means were
insignificant compared to the means themselves. In fact,
the ratio of standard errors to means was at most 0.015
for both PSNR and M . Furthermore, differences between

TABLE V

Mean Segmental Data Compression Numbers N 2
f .

f APCM DWT WPDD CPDD
0.9 193.6 71.6 66.2 57.5
0.99 346.6 181.5 165.6 160.7
0.999 430.1 291.5 266.2 269.2
0.9999 473.2 384.5 356.7 367.2
0.99999 494.2 447.1 425.1 436.6

Fig. 6. Mean segmental PSNR versusM for a fixed f experiment. Curves,
all with β = 12, are ordered from upper left to lower right as CPDD,
WPDD, DWT, and APCM. Points on curves do not have the same
abscissa: α was determined from variable M = N 2

f with fixed f =
0.9, 0.99, 0.999, 0.9999, 0.9999.

TABLE VI

Interpolated PSNR for Given M in a Fixed f Experiment.

M APCM DWT WPDD CPDD
64 7.32 26.58 27.10 30.15
96 12.10 29.60 30.42 33.34

128 15.89 32.53 33.63 36.42
160 18.89 35.39 36.79 39.42
192 21.32 38.24 39.92 42.36
224 23.36 41.09 43.08 45.29
256 25.24 43.98 46.29 48.24
288 27.15 46.96 49.59 51.23
320 29.31 50.06 53.05 54.34
352 31.91 53.39 56.70 57.64
384 35.17 57.09 60.59 61.23
416 39.28 61.29 64.79 65.18

TABLE VII

Interpolated M for Given PSNR in a Fixed f Experiment.

PSNR APCM DWT WPDD CPDD
30 329.7 100.2 91.8 62.5
35 382.8 155.5 141.8 112.8
40 421.2 211.9 192.8 166.3
45 449.0 267.2 243.3 221.0
50 468.8 319.1 291.8 274.9
55 482.8 366.1 337.3 326.2
60 493.0 407.1 379.4 373.4
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TABLE VIII

Mean Segmental PSNR in a Fixed M Experiment for WPDD.

C PSNR in dB at M = L̂
57 161 266 357 425

G 29.4 39.4 47.3 54.8 61.8 3.80
F 30.2 40.0 47.6 54.7 61.5 3.79
E0.5 29.9 39.8 47.8 55.1 61.9 3.90
E1.0 30.2 40.0 47.8 55.1 61.8 3.87
E1.5 30.3 40.1 47.8 54.9 61.7 3.83
E3.0 30.1 39.8 47.3 54.4 61.2 3.71
E4.0 29.9 39.6 47.1 54.2 61.0 3.64
E5.0 29.7 39.4 47.0 54.0 60.8 3.59
W`0.5 29.7 39.6 47.6 54.9 61.5 3.96
W`1.0 29.8 39.6 47.4 54.6 61.2 3.90
W`2.0 18.0 24.2 31.0 37.9 45.4 2.01
A0.5 29.1 39.0 47.0 54.5 61.6 3.87
A1.0 29.7 39.6 47.6 55.0 61.8 4.01
A2.0 30.2 40.1 47.9 55.1 61.7 3.92
N 1
.900 28.7 38.6 46.6 54.1 61.1 3.67
N 1
.990 27.4 37.4 45.4 52.9 60.1 3.27
N 1
.999 26.1 36.2 44.2 51.7 58.8 2.97
N 2
.900 29.6 39.5 47.3 54.5 61.2 3.74
N 2
.990 29.0 39.0 47.0 54.4 61.3 3.72
N 2
.999 28.2 38.3 46.3 53.7 60.9 3.51

HS(pS) 28.9 38.5 46.1 53.1 60.0 3.45
HS(pD) 28.6 38.1 45.7 52.7 59.7 3.38
HS(pTS) 28.8 38.5 46.1 53.1 60.0 3.46
HCW 30.2 40.0 47.6 54.7 61.5 3.79

the means were statistically significant since they were typ-
ically 20–40 fold larger in magnitude than the standard er-
rors. With regard to the mean segmental values of L̂ for
the speech data used in Experiments 2 and 3, CPDD pro-
vided significant computational savings relative to WPDD
as evidenced by the respective values of L̂ = 2.30±0.01 for
CPDD and L̂ = 3.85± 0.01 for WPDD.

Experiment 4 was performed as a fixed M experiment on
the same speech data used in Experiment 1. Tables VIII
and IX list PSNR values for the same values of M used in
Experiment 2. SEM values for all PSNR values listed in the
tables were approximately 0.3 dB. Both CPDD and WPDD
were computed with the DPD(D, C) of the CPT and WPT,
respectively, with the information cost function C taking
the values of basis selection criteria listed in the tables.
For the WPDD, the additive cost E1.0 and non-additive
cost A2.0 performed better than the others over the entire
range of data compression rates considered. Analogously,
for the CPDD, the additive cost E0.5 and non-additive cost
A2.0 performed better than the others when considering the
entire range of rates M . However, G clearly outperformed
the others at lower rates of compression (higher values of

M). For the WPDD, the corresponding values of L̂ for
E1.0 and A2.0 selected decompositions were 3.87 and 3.92,
whereas for the CPDD, the values of L̂ for E0.5 and A2.0

selected decompositions were 2.08 and 1.95, all with SEM

TABLE IX

Mean Segmental PSNR in a Fixed M Experiment for CPDD.

C PSNR in dB at M = L̂
57 161 266 357 425

G 31.8 41.1 48.8 55.8 62.5 2.36
F 33.0 41.5 48.2 54.6 61.1 1.89
E0.5 32.7 41.6 48.6 55.2 61.8 2.08
E1.0 32.9 41.5 48.3 54.7 61.2 1.94
E1.5 32.9 41.5 48.3 54.6 61.1 1.92
E3.0 33.0 41.5 48.2 54.5 61.0 1.89
E4.0 33.0 41.4 48.1 54.5 61.1 1.91
E5.0 33.0 41.4 48.1 54.5 61.1 1.92
W`0.5 31.9 41.1 48.5 55.1 61.7 2.24
W`1.0 32.6 41.2 47.9 54.3 60.8 2.00
W`2.0 28.9 37.6 44.5 51.3 58.4 2.25
A0.5 30.2 39.8 47.8 55.0 61.8 2.57
A1.0 31.3 40.7 48.3 55.2 61.9 2.39
A2.0 32.9 41.5 48.2 54.6 61.1 1.95
N 1
.900 30.8 40.3 47.8 54.7 61.4 2.26
N 1
.990 30.2 39.7 47.7 54.9 61.8 2.34
N 1
.999 30.2 39.5 47.4 54.6 61.5 2.27
N 2
.900 32.6 41.2 47.9 54.3 60.8 1.88
N 2
.990 32.4 41.1 48.0 54.5 61.1 1.94
N 2
.999 31.8 41.0 48.2 54.9 61.6 2.06

HS(pS) 32.3 40.8 47.5 54.0 60.7 1.96
HS(pD) 32.1 40.6 47.4 53.8 60.6 1.96
HS(pTS) 32.3 40.8 47.5 54.0 60.7 1.95
HCW 33.0 41.5 48.2 54.6 61.1 1.89

values of approximately 0.03.

Finally, Experiment 5 was performed as a fixedM exper-
iment on the same speech data used in Experiments 2 and
3. Tables X and XI list interpolated values of PSNR andM
analogous to those in Tables III and IV for Experiment 2.
Using the selection criterion C = G, WPDU outperformed
WPDD at all compression rates, however, CPDD outper-
formed CPDU at high compression rates. This superior
performance for a top-down near-best basis over a bottom-
up best basis occurred at high compression rates (low val-
ues of M) with the cost G known to perform better at low
compression rates (high values of M). In contrast, CPDU
did outperform CPDD at all compression rates with the
cost E1 known to perform well at all compression rates
(cf. Table IX). Since SEM values were typically 0.1 dB
for the PSNR values, the differences in results between
search methods S and cost functions C were not as dra-
matic as the differences between transforms. For example,
from Tables III and X at M = 64, PSNR was 33.9 and
34.2 for CPD(D, E1) and CPD(U , E1) compared to 29.1 for
DWT; while from Tables IV and XI at PSNR = 30, M
was 35.5 and 33.9 for CPD(D, E1) and CPD(U , E1) com-
pared to 70.8 for DWT. Thus the additional improvement
provided by the CPD with bottom-up best basis relative
to the CPD with top-down near-best basis was negligible
in comparison to the improvement already attained by the



0 25 50 75 100
0

1

2

3

4

5

6

7

8

Percentile

S
eg

m
en

ta
l F

LO
P

 C
ou

nt
 x

 1
0^

(-
5)

0 25 50 75 100
0

2

4

6

8

10

Percentile

S
eg

m
en

ta
l P

ro
ce

ss
in

g 
T

im
e 

in
 S

ec
on

ds

PUBLISHED IN OCT 1996 IEEE TRANSACTIONS ON SIGNAL PROCESSING 44(10):2423–2438. 13

TABLE X

Interpolated PSNR for Given M in a Fixed M Experiment

with Search S = D Top-Down or S = U Bottom-Up.

WPD(S,G) CPD(S,G) CPD(S, E1)
M D U D U D U
64 30.0 31.3 32.8 32.4 33.9 34.2
96 33.3 34.7 36.0 35.6 36.8 37.2

128 36.4 37.7 38.8 38.6 39.4 39.8
160 39.1 40.4 41.4 41.3 41.7 42.2
192 41.7 43.0 43.8 43.8 43.9 44.5
224 44.1 45.6 46.1 46.3 46.0 46.6
256 46.6 48.1 48.4 48.7 48.1 48.7
288 49.1 50.6 50.7 51.2 50.2 50.9
320 51.7 53.3 53.2 53.8 52.4 53.1
352 54.6 56.2 55.8 56.6 54.8 55.6
384 57.7 59.4 58.8 59.6 57.5 58.4
416 61.1 62.8 62.0 63.0 60.7 61.6

TABLE XI

Interpolated M for Given PSNR in a Fixed M Experiment

with Search S = D Top-Down or S = U Bottom-Up.

WPD(S,G) CPD(S,G) CPD(S, E1)
PSNR D U D U D U

30 63.4 53.0 40.8 43.8 35.5 33.9
35 111.5 97.8 84.2 88.0 74.1 70.8
40 171.1 154.6 142.5 144.3 135.4 129.5
45 235.7 217.4 209.2 207.5 209.1 200.7
50 299.1 280.3 277.7 272.3 285.2 275.2
55 356.9 338.7 342.1 333.8 354.8 344.4
60 406.6 390.5 397.5 388.5 410.3 401.9

CPD over the DWT. Moreover, the mean segmental value
of L̂ = 1.94 for CPD(D, E1) was significantly smaller than
the fixed value of L = 6 required for CPD(U , E1). The sig-

nificance of the differences between values of the statistic L̂
used to estimate computational complexity was confirmed
with actual measurements of both flops and time. Each of
the percentile curves displayed in Figures 7 and 8 contains
100 points representing the quantiles estimated from 6968
sample points for flop counts and processing times of the
adaptively selected decompositions for the 6968 segments
of speech in Experiment 5. The differences between the
curves are clearly and dramatically visible. Thus, the small
increase in compression rates provided by the bottom-up
best basis relative to the top-down near-best basis did not
justify the large increase in computational complexity re-
quired to obtain that improvement in performance.

VII. Discussion

To select a basis adaptively within a redundant tree-
structured wavelet transform, it is necessary to specify a
search path through the tree and a decision criterion by
which to compare and select branches of the tree. It is

Fig. 7. Percentile curves for segmental flop counts from a fixed M ex-
periment. Number of flops (×10−5) are counted from start of trans-
form decomposition to finish of basis tree selection. Curves (with me-
dian values) are ordered from top to bottom as CPDU (8.25), CPDD
(2.81), WPDU (1.46), and WPDD (0.92).

Fig. 8. Percentile curves for segmental processing time from a fixed
M experiment. Processing time in seconds is measured from start of
transform decomposition to finish of basis tree selection. Curves (with
median values) are ordered from top to bottom as WPDU (10.43),
CPDU (8.40), WPDD (2.25), and CPDD (0.22).
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then possible to implement an appropriate algorithm in-
corporating the search path and selection criterion. Both
Daubechies [29, pages 326–331] and Meyer [7, pages 97–
98] discussed the mathematical principles of the “split-
ting trick” and “splitting algorithm” to generate arbitrary
tree-structured wavelet transforms. However, neither ad-
vocated a particular search path or decision criterion for
selecting a basis within the tree. Moreover, they did not
present any results from experiments. Such work was first
performed by Coifman and Wickerhauser [2]. They im-
plemented their best basis algorithm by incorporating a
bottom-up tree search path with an additive information
cost function as selection criterion. Their algorithm can be
seen as an application to wavelet packet bases of the theo-
retical framework developed by Chou et al [30] for optimal
pruning of tree-structured systems. The origins of optimal
pruning can be traced back to the classification and regres-
sion trees of Breiman et al [31]. More recent developments
of optimal pruning can be followed forward to the optimal
bit allocation of Riskin [32] and the best wavelet packet
bases of Ramchandran and Vetterli [33]. The fundamental
approach common to these developments, including both
the best (minimal entropy) basis of Coifman and Wicker-
hauser [2] and the best (optimal rate-distortion) basis of
Ramchandran and Vetterli [33], is the growth of a larger
tree which is then optimally pruned to a smaller subtree.

In this report, I advocate a different approach, one that
is sub-optimal rather than optimal. In this approach, the
larger tree is never grown and then pruned. Instead the
smaller subtree is grown directly. This approach results
in what I have called a near-best basis obtained with a
top-down search instead of a best basis obtained with a
bottom-up search. Advantages gained by this approach
are significant. Computational complexity can be reduced
with tremendous savings in memory, flops, and time. These
savings become especially significant when the methods are
extended from 1-D signals to 2-D images [13] and other
higher-dimensional signals where the so-called “curse of di-
mensions” prevails. Moreover, because the constraints im-
posed by the requirement of additivity for best bases have
been eliminated, sub-optimal searches for near-best bases
with either additive or non-additive costs can be used more
flexibly and extensibly. In particular, they can be used for
transforms with bi-orthogonal or non-orthogonal wavelets
in addition to orthogonal wavelets (although the stability of
iterating wavelets in packet trees must always be considered
[34]). In this regard, several new non-additive cost func-
tions have been proposed as decision criteria for use in the
basis search algorithms. However, in this more general con-
text of arbitrary cost function as decision criterion for se-
lecting decompositions computed with arbitrary wavelets,
the near-best bases should be more appropriately termed
near-best frames in the case of non-orthogonal wavelets.

Experiments described in this report demonstrated that
the choice of cost function used as selection criterion for
finding a basis decomposition may have a significant im-
pact on both time-frequency analysis (cf. Section V) and
data compression (cf. Section VI). Comparing the vari-

ous cost functions investigated, the `p and ln `2 function-
als (both additive costs) and the data compression area (a
non-additive cost) provided the best performance in gen-
eral. Of note, the −`2 ln `2 functional (an additive cost)
used by Coifman and Wickerhauser [2] was unable to re-
solve the time-frequency components of a signal with arti-
ficial transients (cf. Section V). Moreover, the complexity
and speed of computation of a cost function is dependent
on the particular functional and the hardware implementa-
tion rather than the classification of the functional as addi-
tive or non-additive. For example, computing the additive
functional −`2 ln `2 requires squaring all of the coefficients,
taking their logarithms, and then adding them, while com-
puting the simple variant of the non-additive functionals
N p
f and Ap as Vk ≡ vk(y, 1), where vk(y, p) is defined in

Section III-B, requires sorting only k of the coefficients and
adding them.

However, the choice of search path had an even greater
impact on performance than did the choice of cost func-
tion. Thus, the sub-optimal top-down tree search, instead
of optimal bottom-up tree search, significantly increased
the efficiency of computation without decreasing the effi-
ciency of compression of signals from a speech database (cf.
Section VI). This dramatic increase in computational effi-
ciency applies to memory, flops, and time. If the bottom-up
search is implemented for maximal speed, memory storage
requires O((L+1)N) locations. If the bottom-up search is
implemented for minimal space, memory storage requires
O(2N) locations but only with the trade-off of computing
some or all coefficients twice [6, page 313]. In contrast, the
top-down search is implemented for both maximal speed
and minimal space by intentional design requiring at most
O(2N) memory locations without doubling the computa-
tions as in the space-saving bottom-up search. In fact, the
top-down search was experimentally observed to require
only 1/3 to 2/3 the computations of the non-space-saving

bottom-up search. Compare L̂ ≈ 2 and L̂ ≈ 4 respectfully
for the cosine and wavelet packet top-down decompositions
to the fixed L = 6 for the bottom-up decompositions in
Tables IV and XI. These results were confirmed by actual
flop counts as shown in Figure 7. Moreover, due to various
sources of overhead in the MATLAB implementation of the
algorithms used in the experiments, they translated into
even more dramatic savings in processing time, requiring
only 1/40 to 1/4 of the computing time when comparing
median values for cosine and wavelet packet top-down and
bottom-up decompositions, as shown in Figure 8.

This general conclusion regarding speech data compres-
sion was based on comparisons of the mean segmental
PSNR value as distortion measure and either the fixed or
mean segmental number M of quantized non-zero coeffi-
cients as rate measure. Since DeVore et al [35] demon-
strated an empirical relationship between the number of
coefficients and the number of bytes of compressed data
in the context of image compression, use of this number
has become a common rate measure for compression stud-
ies in the wavelet literature. However, for the development
of an actual speech coder, entropy coding in addition to
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quantization coding, actual bit rates rather than coefficient
counts, and psychoacoustic distortion measures rather than
PSNR should all be investigated [36], [37], [38].

Nevertheless, the use of the rate-distortion measures
studied in this report does not invalidate the following
key results and conclusions obtained with regard to data
compression. First, for speech compression in particular,
the cosine packet transform (which incorporates a discrete
cosine transform) performed significantly better than the
wavelet packet transform and the fast wavelet transform.
This result reconfirms from another perspective the long
established superiority of the discrete cosine transform (rel-
ative to other transforms) due to its close fit to the opti-
mal Karhunen-Loeve transform [39]. Second, for data com-
pression in general (as inferred from the results on speech
compression reported herein), the choice of a decision crite-
rion (information cost function) and basis selection method
(tree search path) may very well impact performance and
should be considered when designing a data compression
method intended for application to a particular class of
data and type of compression. For example, a decision
criterion and tree search path appropriate for best perfor-
mance at high rates of compression and distortion may not
be appropriate at low rates of compression and distortion,
and vice versa. Third, despite the caveat of the second
conclusion, sub-optimizing near-best bases can be consid-
ered “as good as” or “better than” optimizing best bases
in practical situations in which computational complexity
must also be considered, especially in real-time signal pro-
cessing applications. Here, the judgement “as good as” or
“better than” depends on whether the perspective empha-
sizes performance efficiency of compression or computation.

These sub-optimal algorithms selecting near-best
bases can be viewed as examples of a general class of al-
gorithms known as satisficing searches. Simon developed
his concept of satisficing search [40], [41], [42], [43] within
the framework of his theory of bounded rationality [44],
[15], [16]. In his earlier annotated collection of papers, Si-
mon wrote two concise statements specifying the meaning
of satisficing, one in the context of economic behavior:

The key to the simplification of the choice process
. . . is the replacement of the goal of maximizing
with the goal of satisficing, of finding a course of
action that is “good enough.” [44, page 204]

and the other in the context of chess-playing programs:

Again, the key to an effective solution appeared to
lie in substituting the goal of satisficing, of finding
a good enough move, for the goal of minimaxing,
of finding the best move. [44, page 205]

However, it was not until a later paper that he clarified the
etymology:

But if all alternatives are not to be examined,
some criterion must be used to determine that
an adequate, or satisfactory, one has been found.
In the psychological literature, criteria that per-
form this function in decision processes are called
aspiration levels. The Scottish word “satisficing”
(= satisfying) has been revived to denote problem

solving and decision making that sets an aspira-
tion level, searches until an alternative is found
that is satisfactory by the aspiration level crite-
rion, and selects that alternative. [42, page 168]

His most complete mathematical treatment of satisficing
searches for solutions to problems represented as trees (di-
rected graphs) can be found in the most recent [43] of his
papers treating this topic.4

In computational mathematics (and numerical analy-
sis), satisficing methods are apparently not well known or
taught as such. However, examples do exist even if they
have not been identified as “satisficing” methods. One such
example is Gaussian elimination where complete and par-
tial pivoting can be recognized as optimizing and satisficing
methods, respectively. Trefethen and Schreiber [45] have
shown that partial pivoting is sufficient for the average case,
consistent with the problem-solving approach of bounded
rationality espoused by Simon. The work of Trefethen and
Schreiber provides evidence supporting the conjecture of
Golub and Van Loan:

There appears to be no practical justification for
choosing complete pivoting over partial pivoting
except in cases where rank determination is an
issue. [46, page 119]

In analogy with the conjecture of Golub and Van Loan
regarding pivoting for Gaussian elimination, I conclude this
report by offering my conjecture regarding adaptive wavelet
packet decompositions:

There appears to be no practical justification for
using bottom-up optimizing searches instead of
top-down satisficing searches for selecting bases in
tree-structured wavelet transforms except for in-
vestigation and characterization of unknown sig-
nal classes.

In essence, this engineering design advocates using a top-
down satisficing search for the average case in a known
signal class, and a bottom-up optimizing search for the
worst case in an unknown signal class.
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