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Abstract

A spectral-factorization combinatorial-search algo-
rithm has been developed for unifying a systematized
collection of Daubechies minimum length maximum
flatness wavelet filters optimized for a diverse assort-
ment of criteria. This systematized collection com-
prises real and complex orthogonal and biorthogonal
wavelets in families within which the filters are indexed
by the number of roots at z = —1. The main algorithm
incorporates spectral factorization of the Daubechies
polynomial with a combinatorial search of spectral fac-
tor root sets indexed by binary codes. The selected
spectral factors are found by optimizing the desired
criterion characterizing either the filter roots or coef-
ficients. Daubechies wavelet filter families have been
systematized to include those optimized for time do-
main regularity, frequency domain selectivity, time fre-
quency uncertainty, and phase nonlinearity. The latter
criterion permits construction of the orthogonal least
and most asymmetric real and least and most symmet-
ric complex filters. Biorthogonal symmetric spline and
balanced length filters with linear phase are also com-
putable by these methods.

1 Introduction

Since the discovery of compact orthogonal and
biorthogonal wavelets by Daubechies [1], various dis-
cussions of the general theory and specific parameter-
izations of her wavelets have also been published (cf.
[6] for a literature review). These compact Daubechies
wavelets, which have the maximal number of vanishing
moments for their finite length, can be implemented as
discrete filters that are iterated or auto-convolved to
generate approximations of the continuous functions.

A systematic treatment collecting and evaluating
all of the Daubechies real and complex orthogonal and

biorthogonal wavelets constructed with a single unify-
ing computational algorithm has not yet appeared in
the literature. Such an effort was begun by Taswell [5]
focusing on wavelets with varying degrees of asymmetry
or symmetry that can be derived by spectral factoriza-
tion of the Daubechies polynomial. Significant advan-
tages of the spectral factorization approach include its
generalizability to many different classes and types of
wavelets, its suitability for easily interpretable visual
displays, and thus its practicality in pedagogy.

Compact asymmetric and symmetric wavelets in-
clude the original orthogonal “extremal phase” and
“least asymmetric” families as well as the biorthogo-
nal “spline” and “spline variations” families described
by Daubechies [1]. As introduced by Taswell [5], these
families can be extended and systematized with a gen-
eralized flexible yet automated algorithm that permits
consistent selection of alternative choices and the iden-
tification of filters with optimized parameters. As fur-
ther developed in this report, these parameters now
include phase nonlinearity, time domain regularity, fre-
quency domain selectivity, and time frequency uncer-
tainty, but can be readily extended to include other pa-
rameters as optimization criteria. In all cases, a combi-
natorial search algorithm incorporating a binomial sub-
set selection [4, 5] is used to choose the spectral factors
satisfying the required objective criterion defined for
each family.

2 Methods

Methods presented here focus on the spectral-
factorization combinatorial-search algorithm which re-
quires a separate algorithm for computing the roots of
the product filter Pp(z) or its related form the quotient
filter

Qp(2) = (2 +1)*P*VPp(2) (1)

which is the product filter divided by the roots at
z = —1. Refer to [6] for details.

2.1 Factorization Rules

When considering spectral factorization, the prod-
uct filter polynomial Pp(z) with N, = 4D + 3 coeffi-
cients and K, = 2D + 2 roots at z = —1 is factored
into the analysis and synthesis filter polynomials A(z)
and S(z) with N, and Ny coefficients, and K, and K
roots at z = —1, respectively. This factorization yields
the constraints N, = No + Ny — 1 and K, = K, + K,
on the lengths of the three filters and their numbers of
roots at z = —1. Each family of filters in the collection
has been named with an identifying acronym followed
by the parameters (N, Ng; K,, Ks) in the biorthogonal



cases and by (N; K) in the orthogonal cases which re-
quire N = N, = Ny and K = K, = K,. See Table 1 for
a list summarizing the names and designs of the filter
families.

With regard to the respective cases of real biorthog-
onal, real orthogonal, and complex orthogonal, various
additional constraints must be imposed. If K, K, and
K, = K, + K, are the numbers of roots at z = —1 for
A(z), 8(z), and P(z), then the corresponding filters
have coeflicient lengths

N, = K +4n%42n™ 41 (2)

N, = K,+4nS%+ 202 1 (3)

N, = 2K,-1 (4)
rd

where n¢4, n¢ nrd and n'd are the numbers of complex
quadruplets {z,z71, 2,271} and real duplets {r,r~1}
for A(z) and S(z). Both n and n*¥ may be whole or
half integer. If half integer, then half a complex quadru-
plet denotes a complex duplet while half a real duplet
denotes a real singlet.

For K, and K, necessarily both odd or both even,
then K, is always even and K = K,,/2 a whole integer
determines n;1 = ngt+ng? and n;d = n'd4+ntd accord-
ing to nyd = [(K —1)/2] and n;d = (K — 1) mod 2.
If K, and K are given, then K, and K yield n; and
nid split into {ng?, ni'} and {n%, !} and the roots
are factored accordingly. For real coefficients, a root
z must be paired with its conjugate z. For symmetric
coefficients, a root z must be paired with its reciprocal
2z~1. For 2-shift orthogonal coefficients, a root z must
be separated from its conjugate reciprocal z71.

Thus, in the real biorthogonal symmetric case, each
complex quadruplet {z,z, 271,27} and real duplet
{r,r~1} must be assigned in its entirety to either A(z)
or §(z). In the real orthogonal case, each complex
quadruplet is split into two conjugate pairs {z,z} and
{271, 271}, while each real duplet is split into two sin-
glets {r} and {r~!'}, with one factor assigned to A(z)
and the other to S(z). The complex orthogonal case is
analogous to the real orthogonal case except the com-
plex quadruplets are split into reciprocal pairs {z, 271}
and {z,z7!'} instead of conjugate pairs. The com-
plex orthogonal symmetric case requires use of complex
quadruplets without real duplets.

All orthogonal cases require K = K, = K, = K, /2,
ngd = ng = ng1/2, and nf! = ni? = ni!/2 with
N = N, = N, = 2K. Note that n;d can only
equal 0 or 1. Therefore, in biorthogonal cases, either
{nd =0, ntd =1} or {02 =1, n'd = 0}. How-
ever, in orthogonal cases, either {n!d = n'd = 0} or
{nid = n'd = 1/2} with 1/2 of a duplet denoting a sin-
glet. For all real orthogonal cases as well as those com-
plex orthogonal cases not involving symmetry criteria,
K can be any positive integer. For the complex or-
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thogonal least-asymmetric and most-asymmetric cases,
K must be a positive even integer. For the complex
orthogonal least-symmetric and most-symmetric cases,
K must be a positive odd integer.

For the real biorthogonal symmetric cases, K, and
K must be both odd or both even. In the biorthog-
onal symmetric spline case, all additional roots (other
than those at z = —1 with assignment determined by
K, and Kj) are assigned to the analysis filter leav-
ing the synthesis filter as the spline filter. All other
biorthogonal symmetric cases incorporate a root assign-
ment constraint that balances the lengths of the anal-
ysis and synthesis filters such that N, ~ N, as much
as possible. For K, = 2i — 1 and K, = 25 — 1 both
odd with 4,5 € {1,2,3,...}, balancing of equal filter
lengths is possible. In fact, requiring both K, = K, and
N, = Ng is also possible when N = N, = N, = 2K
with K = K, = K; for {K =144k | k=1,2,3...}.
However, for K, = 2i and Ks = 25 both even, equal
balancing of filter lengths N, and N is not possible.
The additional unbalanced roots are assigned to the
analysis filter such that N, > N; leaving the synthesis
filter as the shorter filter.

2.2 Selection Criteria

Selection criteria to be optimized include the
phase nonlinearity pnl(A), time domain regularity
tdr(A), frequency domain selectivity fds(A), and time
frequency uncertainty tfu(A) [5, 3].  For all of
the biorthogonal symmetric balanced-length families
(which excludes the biorthogonal symmetric spline fam-
ily) and for all of the orthogonal families, the selection
criterion is optimized for the analysis filter. However,
for the biorthogonal balanced-length balanced-regular
family, the selection criterion is optimized for both anal-
ysis and synthesis filters by maximizing a balancing
measure B defined as

tdr(A) + tdr(S)

B(tdr(-), A,S) = tdr(A) — tdr(S)

(5)

when applied to tdr(-) for A and S. Phase nonlinear-
ity pnl(.A) does not apply to real biorthogonal filters
with linear phase. However, it does apply to the real
and complex orthogonal filters. Minimizing or maxi-
mizing pnl(A) for real filters defines the least and most
asymmetric families, respectively. In addition, if the
parity of K is ignored, then minimizing or maximizing
pnl(A) for complex filters defines the least and most
nonlinear families, respectively. See Table 1 for a sum-
mary of the filter designs. Note that the DROLD and
DROMA families are computed via different factoriza-
tion and selection methods but should ideally be equiv-
alent. Also note that the DCOLN family is the union
of the even-indexed DCOLA and odd-indexed DCOMS
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families, while the DCOMN family is the union of the
even-indexed DCOMA and odd-indexed DCOLS fam-
ilies. Complete details for the algorithms to compute
each of the various selection criteria can be found else-
where [6, 3].

2.3 Unifying Algorithm

All filter families of the systematized collection are
generated by the spectral factorization and optimizing
combinatorial search incorporated in the following al-
gorithm:

1. Input the identifying name FiltName for the fam-
ily of filters and the indexing design parameters
K, and K.

2. Compute K, = K, + K5, D = K,,/2 — 1, and the
ngt = |D/2] complex quadruplet and ni! = D
mod 2 real duplet roots of the quotient filter

QD(Z)

3. Determine the factorization rules and selection
criterion that define the family of filters named
FiltName.

4. Compute the splitting number pairs {ngl,n1}
and {nf},ni%} from {nS%,nid} for the FiltName

filter pair indexed by {K,, Ks}.

5. Sort the roots in an order convenient for the class
of splitting appropriate to the type of filter. For
example, all roots of a complex quadruplet should
be adjacent with duplets of the quadruplet sub-
sorted according to conjugates or reciprocals de-
pending on the filter type. Assign binary coded
labels 0 and 1 to the first and second duplet
of each quadruplet. Analogously assign binary
codes to the first and second singlet of the real
reciprocal duplet if present.

6. Generate the possible binomial subsets for these
binary codes [2] subject to the imposed factoriza-
tion rules and splitting numbers. For example, in
the orthogonal case, there are a total of n<% 4 nid
binary selections and 2%+ =1 hinomial subsets
ignoring complements.

7. For each root subset selected by the binomial
subset codes, characterize the corresponding fil-
ter by the optimization criterion appropriate for
the FiltName family. These optimization crite-
ria may be any of the numerically estimated filter
parameters computed from the roots or the coef-
ficients [6, 3].

8. Search all root subsets to find the one with the
optimal value of the desired criterion.

9. Include the K, and K, required roots at z = —1
for the selected optimal subset of roots intended
for the spectral factor A(z) and for the comple-
mentary subset intended for the synthesis spectral
factor S(z).

10. In the orthogonal case, compare the selected (pri-
mary) subset of filter roots and coeflicients with
its complementary subset to choose the one with
minimax group delay over the interval w € [0, 3]
as the subset for A(z).

Full searches of all possible combinatorial subsets
should be performed for a sufficient number of K in-
dices for the filter family’s members to infer the ap-
propriate pattern of binary codes characterizing the
family. Using such a pattern permits successful partial
rather than full combinatorial searches. These partial
searches provide significant reduction in computational
complexity convenient for larger values of K.

3 Results

All filters of all families were demonstrated to meet
or surpass requirements for orthogonality, biorthogo-
nality, and reconstruction when tested [3] in 2-band
wavelet filter banks. In general, reconstruction errors
ranged from “perfect” at O(107 1) to “near-perfect” at
O(1078) as K ranged from K = 1 to K = 24 for both
orthogonal and biorthogonal classes. All filter fami-
lies were observed to have the optimal values of their
defining selection criterion when compared to the other
families. Figures 1 and 2 display examples of results
for two of the selection criteria, pnl(A) and tfu(A), as
a function of K for each filter family. Note that the lists
in the figure legends order the filter families according
to the median values observed for 1 < K < 24. Refer
to [6] for a complete catalogue of all results for all of
the filter families with both numerical tables of param-
eter estimates and graphical displays of the filters in
the time, frequency, and Z domains.

4 Discussion

An algorithm has been developed to unify all of
the diverse families of real and complex orthogonal and
biorthogonal Daubechies wavelets. This automated al-
gorithm is valid for any order K of wavelet and insures
that the same consistent choice of roots is always made
in the computation of the filter coefficients. It is also
sufficiently flexible and extensible that it can be gen-
eralized to select roots for filters optimized by criteria
other than those mentioned here in this report. System-
atizing a collection of filters with a mechanism both for



generating and evaluating the filters enables the devel-
opment of filter catalogues with tables of numerical pa-
rameter estimates characterizing their properties. Use
of these catalogues as a resource enables the investiga-
tor to choose an available filter with the desirable char-
acteristics most appropriate to his research problem or
development application.
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Table 1: Summary of Filter Designs for Systematized Collection of Daubechies Wavelets

Nonorthogonal P(z) Description Construction Index Constraint
LRNSI(N,; Kp; d) Symmetric Interpolating Pr(z) coefs K,=2L; L>1
DRNSI(N,; Kp; d) Symmetric Interpolating via Qp(z) roots K,=2D+2; D>0
Biorthogonal A(z), S(z) Description Factorization Constraint Optimization
DRBSS(Na, Ns; Ko, Ks) Symmetric Spline {zr # —1} to A(2) even (K, + K) none
DRBLU(Ng, Ns; Ko, Ks) Least Uncertain conj recip quads even (K, + Ks) min tfu(A)
DRBMS(Ng, Ns; Kq, Ks) Most Selective conj recip quads even (K, + K) max fds(A)
DRBMR(Ng, Ns; Ko, Ks) Most Regular conj recip quads even (K, + Ks) max tdr(.A)
DRBBR(Na, Ns; Kq, Ks) Balanced Regular conj recip quads even (K, + Ks) max B(tdr(-), A, S)
Orthogonal A(z) Description Factorization Constraint Optimization
DROLD(N; K) Least Delayed {]zk] < 1} to A(z) K>1 none
DROLU(N; K) Least Uncertain quads — conj dups K>1 min tfu(A)
DROMR(N; K) Most Regular quads — conj dups K>1 max tdr(.A)
DROLA(N; K) Least Asymmetric quads — conj dups K>1 min pnl(.A)
DROMA(N; K) Most Asymmetric quads — conj dups K>1 max pnl(.A)
DCOLU(N; K) Least Uncertain quads — recip dups K>1 min tfu(A)
DCOMR(N; K) Most Regular quads — recip dups K>1 max tdr(.A)
DCOLS(NV; K) Least Symmetric quads — recip dups odd K >3 max pnl(.A)
DCOMS(N; K) Most Symmetric quads — recip dups odd K >3 min pnl(.A)
DCOLA(N; K) Least Asymmetric quads — recip dups even K >4 min pnl(.A)
DCOMA(N; K) Most Asymmetric quads — recip dups even K >4 max pnl(.A)
DCOLN(N; K) Least Nonlinear quads — recip dups K>1 min pnl(.A)
DCOMN(N; K) Most Nonlinear quads — recip dups K>1 max pnl(.A)

Product filter P(z) is split into spectral factors for analysis filter A(z) and synthesis filter S(z). Names are abbreviated
with first character L or D for Lagrange or Daubechies, second character R or C for Real or Complex, and third
character N, B, or O for nonorthogonal, biorthogonal, or orthogonal. Filters have length N coefficients and K roots
at z = —1. Interpolating filters are exact for polynomials of regular degree d. All biorthogonal filters are symmetric.
All biorthogonal filters except DRBSS have balanced length. Complex conjugate reciprocal quadruplets are split
into conjugate duplets or reciprocal duplets; real reciprocal duplets are split into real singlets but have been omitted
from the table; see Sections 2.1 and 2.2 for further explanation of factorization rules and selection criteria.
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Orthogonal Filter Banks: Phase NonLinearity
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Figure 1: Phase nonlinearity of orthogonal filters.
Orthogonal Filter Banks: Time—Frequency Uncertainty
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Figure 2: Time frequency uncertainty of orthogonal filters.



