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Abstract

Search algorithms for finding signal decompositions called near-best bases using
decision criteria called non-additive information costs have recently been proposed
by Taswell [12] for selecting bases in wavelet packet transforms represented as bi-
nary trees. These methods are extended here to distinguish between top-down and
bottom-up tree searches. Other new non-additive information cost functions are
also proposed. In particular, the near-best basis with the non-additive cost of the
Shannon entropy on probabilities is compared against the best basis with the ad-
ditive cost of the Coifman-Wickerhauser entropy on energies [3]. All wavelet packet
basis decompositions are also compared with the nonorthogonal matching pursuit
decomposition of Mallat and Zhang [7] and the orthogonal matching pursuit de-
composition of Pati et al [8]. Monte Carlo experiments using a constant-bit-rate
variable-distortion paradigm for lossy compression suggest that the statistical per-
formance of top-down near-best bases with non-additive costs is superior to that of
bottom-up best bases with additive costs. Top-down near-best bases provide a sig-
nificant increase in computational efficiency with reductions in memory, flops, and
time while nevertheless maintaining similar coding efficiency with comparable re-
construction errors measured by �p-norms. Finally, a new compression scheme called
parameterized model coding is introduced and demonstrated with results showing
better compression than standard scalar quantization coding at comparable levels
of distortion.

1 Introduction

Much of the statistically oriented wavelet literature focuses on theoretical models of
stochastic processes and/or asymptotic properties of statistical estimators related to
wavelet analysis and methods. But according to Berkson [1], “Statistics, however you
define it, is very much earthbound and deals with real observable data; what is sta-
tistically true must be literally verifiably true for such data.” Referring to theorems of
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aymptotic analysis, he elaborates that “if these theorems were valid for large samples,
they must refer to infinitely large samples, which is to say, samples so large that no
statistician ever gets them, at least not on this unpleasant earth.” He then advocates
the use of actual experiments to evaluate the performance of statistical methods on
small samples. It is this pragmatic empirical approach of Berkson that is adopted as the
foundation for the work presented in this report. In particular, the experimental statis-
tical performance of wavelet packet decomposition methods are investigated with regard
to three separate issues: 1) the search method – various complete basis searches versus
matching pursuit searches, 2) the decision criterion – various information cost functions
such as entropy, and 3) the coding method – a novel method based on parameterized
regression modelling versus standard scalar quantization.

Coifman and Wickerhauser [3] presented an algorithm for the selection of the best
basis representation of a signal within a library of orthonormal basis representations
generated by wavelet packet transforms which can be searched as balanced binary trees.
They defined the best basis to be that which minimized an information cost function C
and chose the −�2 ln �2 functional (related to the Shannon entropy) as their archetype
for C. The computational cost of the best basis algorithm is O(LN) where L = �log2N�
is the number of levels or depth of the transform or tree and N is the length of the
signal. Mallat and Zhang [7] presented a greedy algorithm for the selection of the best
matching pursuit decomposition of a signal into time-frequency packets from a large
dictionary of such packet waveforms. The computational cost of the matching pursuit
algorithm is O(MLN) where M <= N is the number of packets selected. As discussed
by Mallat and Zhang [7], the matching pursuit algorithm with its local optimization
properties guarantees a more compact signal decomposition (typically M << N) than
that of the best basis algorithm with its global optimization properties. However, this
more compact signal coding is achieved at the expense of greater computational cost
in which although M << N , nevertheless 1 << M . So the additional computational
cost of the matching pursuit algorithm is significant relative to that of the best basis
algorithm.

This trade-off between computational cost efficiency versus signal coding efficiency
for the two algorithms, best basis versus matching pursuit, raises several questions:
Can “compromise” algorithms be developed with intermediate or adjustable rates of
coding and computational efficiency as required by the application? Under what cir-
cumstances is it relevant and necessary to perform additional computations in order
to obtain more efficient coding? In other words, what is the point of “diminishing re-
turns”? In an initial attempt to explore these questions, Taswell proposed near-best
bases with non-additive costs [12] as an alternative to best bases with additive costs
[3]. In this report, I propose several more basis selection algorithms and decision crite-
ria to be added to the list of those already presented in [12]. In particular, top-down
and bottom-up tree searches are distinguished. Furthermore, the Shannon entropy on
probabilities and the Coifman-Wickerhauser entropy on energies are distinguished. The
statistical performance of the various basis and pursuit decompositions are investigated
with Monte Carlo experiments on test signals with additive white noise. In lossy com-
pression experiments with a uniform-quantization and fixed-bit-rate paradigm as well
as with a new compression scheme called parameterized model coding, top-down bases
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are shown to provide performance superior to bottom-up bases with significant savings
in computational requirements for memory, flops, and time.

2 Information Cost Functions

We consider data vectors x,y ∈ IRN and z ∈ IR2N for which we wish to compare their
information costs by some measure.

2.1 Additive Costs and Comparisons

Additive costs were originally intended for use with the best bases of Coifman and
Wickerhauser [3].

Definition: A cost functional Cadd from vectors x ∈ IRN to IR is called an additive
information cost function if Cadd(0) = 0 and Cadd(x) =

∑
i Cadd(xi).

Definition: The inequality Cadd(z) ≤ Cadd(x,y) between vectors x,y ∈ IRN and
z ∈ IR2N is called an additive information cost comparison if Cadd(x,y) ≡ Cadd(x⊕y) =
Cadd(x) + Cadd(y).

We can define several additive information cost functions as

Cadd
1 (y) = Ep(y) =

∑
i

|yi|p

Cadd
2 (y) = F(y) = −

∑
i:yi �=0

y2
i ln y2

i

Cadd
3 (y) = G(y) =

∑
i:yi �=0

ln y2
i

which are respectively the �p functional related to energy and the �p norm, the −�2 ln �2

functional related to Shannon entropy, and the ln �2 functional related to Gauss-Markov
entropy2 (cf. [15]).

2.2 Non-Additive Costs and Comparisons

Non-additive costs were proposed for use with the near-best bases of Taswell [12].
Definition: A cost functional Cnon from vectors x ∈ IRN to IR is called a non-additive

information cost function if it serves as a decision criterion for a basis selection algorithm
and it is not an additive information cost function Cadd.

Definition: The inequality Cnon(z) ≤ Cnon(x,y) between vectors x,y ∈ IRN and
z ∈ IR2N is called a non-additive information cost comparison if Cnon(x,y) ≡ Cnon(x ⊕
y) �= Cnon(x) + Cnon(y).

We can construct several examples of non-additive cost functions from the probabil-
ity density function for the data coefficients. In the discrete vector context, a probability
mass function (pmf) can be estimated with simple histogram binning methods in con-
junction with various rules for the number of bins. Thus let

JS = 1 + log2N

JD = 1 + log2N + log2(1 + γ̂
√
N/6)

JTS =
3
√

2N

2More precisely, the Shannon entropy of a Gauss-Markov process.
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be the number of bins J according, respectively, to the Sturges’, Doane’s, and Terrell-
Scott’s rules [11, pages 48 and 73], where γ̂ is an estimate of the standardized skewness
coefficient. Given the number of bins J and the sample data interval [a, b] where a =
mini yi and b = maxi yi, then the bin width is w = (b − a)/J . Using the bin width w,
the frequency fj for the jth bin is defined as

fj = #{yi | yi ≤ a+ jw} −
j−1∑
k=1

fk

and the probabilities pj are calculated from the frequencies fj simply as pj = fj/N .
Let pS, pD, and pTS denote the pmf vectors p when estimated with JS, JD, and JTS,
respectively.

Now the Shannon entropy HS [6] for a finite scheme {(Aj, pj) | 1 ≤ j ≤ J} of events
Aj with probabilities pj is defined as

HS(p) = −
J∑
j=1

pj log2 pj

where the probabilistic events (Aj, pj) are identified with the fractions of coefficients
located within the histogram bin intervals. Therefore, three non-additive cost functions
can be defined as

Cnon
1 (y) = HS(pS(y))

Cnon
2 (y) = HS(pD(y))

Cnon
3 (y) = HS(pTS(y)).

Another non-additive cost function is the Coifman-Wickerhauser entropy HCW [3]. This
functional is also the Shannon entropy of a finite scheme but one where the probabilistic
events (Aj, pj) are identified with the normalized energies rather than probabilities of
the data coefficients:

Cnon
4 (y) = HCW(y) = −

N∑
i=1

|yi|2
‖y‖2

2

ln
|yi|2
‖y‖2

2

.

We can construct additional examples of Cnon with the sorted vector [y(k)] where

y(1) = |yi1| ≥ · · · ≥ y(N) = |yiN |

so that y(k) = |yik | is the kth largest absolute value element of the vector [yi]. The
decreasing-absolute-value sorted vector [y(k)] suffices to define the weak-�p norm (cf.
[5]). However, constructing the decreasingly sorted, powered, and cumulatively summed
vector [vk(y, p)], and renormalized vector [uk(y, p)] where

uk(y, p) =
vk(y, p)

vN(y, p)
with vk(y, p) =

k∑
i=1

yp(i)

makes it convenient to define several other Cnon. (Note that 0 ≤ uk(y, p) ≤ 1 because
of the normalization.) Thus, with [y(k)] and [uk(y, p)] obtained from [yi], define the
non-additive information cost functions
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Cnon
5 (y) = W�p(y) = max

k
k(1/p)y(k)

Cnon
6 (y) = N p

f (y) = arg min
k
|uk(y, p)− f |

Cnon
7 (y) = Ap(y) = N −

∑
k

uk(y, p)

which are respectively the weak-�p norm, data compression number, and data compres-
sion area [12].

Here the power p and fraction f are parameters3 chosen from the intervals 0 < p ≤ 2
and 0 < f < 1. The functions N p

f and Ap were designed to yield scalar values that could
be meaningfully minimized in a basis search algorithm and were named according to
their natural or geometric interpretation. For example, choosing p = 2 and f = .99 and
then using N 2

.99 yields the minimum number of vector coefficients containing 99% of
the energy of the entire vector. The data compression number N p

f and area Ap can be
contrasted by observing that the numberN p

f is a local measure with varying “sensitivity”
to different intervals of the uk versus k curve whereas the area Ap is a global measure
of the entire curve. The minimum values attainable represent maximum compression.
They are readily computed for a Kroniker delta vector δ with unit energy: N p

f (δ) = 1
and Ap(δ) = 0.

3 Basis Selection Methods

We consider vectors x,y ∈ IRN and orthonormal transformation matrix B ∈ IRN×N .
Then y = Bx and C(y) are respectively the coefficient vector and information cost
scalar for x in the coordinate system represented by the basis B. We wish to find a
basis B for which C(y) is minimal, subject possibly to some constraint on the search.

3.1 Bottom-Up Tree Searches

Both the best basis of Coifman and Wickerhauser [3] and the near-best basis of Taswell
[12] were originally defined for bottom-up tree searches rather than top-down tree
searches. We consider the top and bottom of the tree, respectively, to be the root node
and terminal nodes of the full balanced tree corresponding to the finest and coarsest
resolutions of the data.

3.1.1 Best Basis Search The best basis was defined for additive costs by Coifman
and Wickerhauser [3].

Definition: The best basis relative to Cadd for a vector x in a library B of bases is
that B for which Cadd(Bx) is minimal.

Wickerhauser [15] provided notes for an implementation of the best basis search.
This search algorithm is presented below with some changes in terminology and notation
and with an emphasis on data structure implementation using matrices and vectors. A
discrete packet transform is considered to be any multiresolution transform (such as
a wavelet packet transform or local trigonometric transform) that yields a table of
transform coefficients which can be organized as a balanced binary tree. The table is

3The use of the parameter p for power and f for fraction should not be confused with the use of the
vectors p and [pj ] for probabilities and f and [fj ] for frequencies.
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called a discrete packet table P with levels l and blocks b of the table corresponding to
levels l and branches b of the tree.4 For both tables and trees, the finest and coarsest
resolution scales are indexed levels 0 and L respectively. There are 2l blocks on each
level and thus K = 2(L+1) − 1 blocks in the entire table. Within each block b on level l,
there are 2−lN cells c where N is the length of the original signal x. Thus each coefficient
in the packet table P can be specified as the 4-vector [a, l, b, c] where a is the packet’s
amplitude and l, b, and c are its level, block, and cell indices.5

To exploit modularity, it is necessary to build two trees for each packet table P: the
additive information cost tree Cadd and the basis selection tree S. In WavBox 4.1 c©
1994 Carl Taswell [13], the functions dpt2ict and ict2bst perform these mappings from
discrete packet table to information cost tree and from information cost tree to basis
selection tree, respectively, as

Cadd = dpt2ict(P, Cadd)

S = ict2bst(Cadd,S)

with the notational convention that cost functions C and selection methods S are de-
noted in script font while cost trees C and selection trees S are denoted in bold font.
This modularity permits 1) the output of various cost trees Cadd for the same packet
table P input to dpt2ict with various choices of cost functions Cadd as second argument,
and 2) the output of various selection trees S for the same cost tree Cadd input to ict2bst
with various choices of selection methods S as second argument.

To compare various decompositions, it is convenient to convert discrete packet tables
Ptable to discrete packet lists Plist representing the selected bases. Each list contains M
packets specified as row 4-vectors [ai, li, bi, ci] with rows i = 1, ...,M ordered so that
|a1| ≥ · · · ≥ |aM |. In WavBox 4.1, the function dpt2dpl performs this restructuring
of the data via the mapping Plist = dpt2dpl(Ptable,S). To study the complete basis
decomposition, we must examine the entire list where M = N . However, we may also
study subsets of the list where M < N , for example, where we choose M = N 2

.99 <
N . And as noted already in Section 1, matching pursuit decompositions generate Plist

directly with M << N so that lists with N packets are simply not available for them.

Thus, there are four data structures: Ptable ∈ IRN×(L+1), Cadd ∈ IRK , S ∈ χK where
χ = {0, 1}, and Plist ∈ IRM×4. Since tables and trees are implemented respectively as
matrices and vectors, table blocks and corresponding tree branches indexed by (l, b)
are respectively vectors and scalars; they are denoted P table

lb ≡ P table
ilb,jlb

, Cadd
lb ≡ Cadd

klb
, and

Slb ≡ Sklb where for l ∈ {0, 1, . . . , L} and b ∈ {0, 1, . . . , 2l−1}, the row and column vector
indices ilb, jlb are for level l block b in a table matrix, and the scalar index klb is for level l
branch b in a tree vector. Since the ith packet in Plist will be denoted P list

i ≡ [ai, li, bi, ci],
it should be clear from context that Pi is from the list Plist while Plb is from the table
Ptable.

Now with Cadd
lb = Cadd(Plb) already computed for all l and b, and Slb initialized to 1

for all b on level L and to 0 elsewhere, then the comparison and selection step of the
best basis search can be expressed as

4For the sake of mnemonics, the term branch is used here in place of the more customary term node.
5These level, block, and cell indices also correspond to scale, frequency, and position indices.
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if Cadd
lb ≤ Cadd

l+1,2b + Cadd
l+1,2b+1

then Slb = 1
else Cadd

lb = Cadd
l+1,2b + Cadd

l+1,2b+1

and the search is performed breadth-first and bottom-up through the tree. Retaining
only the top-most selected branches of S by resetting any lower selected branches to
0 (ie.,pruning descendant lines) yields the best basis selection tree S with Slb = 1
indicating a selected branch.

3.1.2 Near-Best Basis Search The near-best basis was defined for non-additive costs
by Taswell [12]. It is modified here to be more general, allowing for inclusion of both
additive and non-additive costs.

Definition: The near-best basis relative to C (either Cnon or Cadd) for a vector x in
a library B of bases is that B ∈ B∗ ⊂ B for which C(Bx) is minimal subject to the
constraints of the search within the subset B∗ defined by the search type.

Here B∗ is the proper subset of library bases that are searched by the selection
algorithm. Searching the subset B∗ defined by the Coifman-Wickerhauser bottom-up
tree search yields the optimal or best basis within the entire library B for an additive
information cost function Cadd (cf. proof [3, page 717]). However, since B∗ �= B, this
search is not exhaustive and cannot guarantee the selection of a best basis for a non-
additive information cost function Cnon. Moreover, there are many other search types,
including top-down tree searches, for which neither additive nor non-additive costs can
guarantee the selection of a best basis. For this reason as well as empirical evidence
suggesting nearly equivalent performance, a basis selected by either a non-additive or
additive cost subject to the constraint of a search within a proper subset B∗ of the
library B is called a near-best basis.

The same sequence of comparisons of basis blocks’ information costs are performed
for the bottom-up near-best basis search as for the bottom-up best basis search. How-
ever, Cadd is replaced by Cnon. This substitution invalidates the modular independence
separating computation of costs from selection of bases described in Section 3.1.1. It is
therefore necessary to combine the basis selection with the cost computation. So with
Cnon
lb = Cnon(Plb) already computed for all b on level L, and Slb initialized to 1 for all b

on level L and to 0 elsewhere, then the comparison and selection step of the near-best
basis search can be expressed as

if Cnon(Plb) ≤ Cnon(Pl+1,2b ⊕ Pl+1,2b+1)
then Slb = 1
else Plb = Pl+1,2b ⊕ Pl+1,2b+1

and the search is performed breadth-first and bottom-up through the tree with pruning
of descendant lines as described in Section 3.1.1. In WavBox 4.1, the function dpt2bst
performs this mapping from discrete packet table to basis selection tree as [S,C] =
dpt2bst(P,S, C). The additional computational cost of dpt2bst with C = Cnon relative to
dpt2ict and ict2bst with Cadd is essentially just the cost of the sorting for those examples
(W�p, N p

f , and Ap) of Cnon which require it as described in Section 2.2. Although not
detailed here, it is possible to implement this algorithm without repeating for the same
coefficients the required sorts and powers.
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3.2 Top-Down Tree Searches

The best and near-best bases as described above are selected by breadth-first bottom-up
searches through the table or tree. These searches can be implemented as the additive
or non-additive cost comparison and basis selection step inside an inner for-loop for the
table blocks or tree branches and an outer for-loop for the levels. Therefore, they can
also be named bottom-up additive best and non-additive near-best bases with selection
method S = U to distinguish them from top-down additive near-best and non-additive
near-best bases with S = D. These top-down bases are selected in the opposite direction
by depth-first top-down searches with the search terminated as soon as the cost of the
children blocks or branches is greater than the cost of the parent block or branch. They
can be implemented as the cost comparison and basis selection step within a recursion
controlled by a last-in first-out stack. Table 1 provides a summary of these alternative
selection algorithms.

Table 1: Search algorithms for selecting bases in wavelet packet decompositions.

Wavelet Packet Decomposition Notation
(Bottom-Up Additive) Best WPDB(U , Cadd)
Bottom-Up Non-Additive Near-Best WPDB(U , Cnon)
Top-Down Additive Near-Best WPDB(D, Cadd)
Top-Down Non-Additive Near-Best WPDB(D, Cnon)

Since top-down searches do not necessarily examine the entire table or tree, they
cannot guarantee finding an optimal basis. However, they enable the possibility of per-
forming the cost computation and basis selection simultaneously with generation of the
packet table transform coefficients. Because the algorithm runs unidirectionally down-
ward in the tree, it can be performed essentially “in place” thus significantly reducing
memory storage requirements. Furthermore, because the algorithm does not necessarily
require that the entire table and tree be generated and searched, it can be performed
with significant savings in machine operations and computing time. This reduction in
computational cost corresponds to a number L̂ representing the number of levels of the
transform that need to be computed. This number is estimated by totalling the number
of coefficients in all parental blocks above and in the two children blocks below each se-
lected block. Thus, L̂ is a rational (not necessarily integer) number that ranges between
1 and L.

4 Compression and Distortion

For experiments investigating lossy compression of signals, we wish to minimize the
distortion D resulting between the reconstruction x̂ and the original signal x following
compression and coding of the wavelet packet decomposition Plist. Compression can be
achieved by truncating the N packets in the list to the M < N largest absolute-value
packets and then quantizing and coding the remaining M packets. Standard methods
of coding data include scalar and vector quantization. The quantization and coding of
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the M packets remaining after truncation of the list applies only to the amplitudes a
and not to the level-l, block-b, and cell-c indices which must be coded without loss of
information. Since the (l, b, c)-index information is retained for each packet retained in
this compression scheme, it is possible to consider other coding schemes for the packet
amplitudes a. I propose a new method incorporating parameter estimation by statistical
regression modeling with Yi = f(Xi,θ)+ εi for some function f , parameter θ, and noise
εi. Applied in this context, I propose estimating the parameters of the smooth curve
traced by a plot of vk (defined in Section 2.2) as a function of the index k. This curve
can be modeled by a low order polynomial with coefficients estimated by (possibly
weighted) linear regression. Alternatively, it can be approximated by a variety of well-
known nonlinear models with a small number of parameters [10]. Note that this coding
scheme requires that a sign bit be retained for each packet amplitude because the sign
information is lost in the conversion to vk. However, the improvement in compression can
still be significant: If the coding rate is RPA bits per scalar quantized packet amplitude
and RMC bits per parameterized model coefficient with RCM coefficients per model,
then the total numbers of bits required for encoding the M packets’ amplitudes are
RSQ = MRPA for scalar quantized coding and RPM = M +RMCRCM for parameterized
model coding. Finally, the total number of bits required for encoding the M packets’
(l, b, c) indices is denoted Rlbc.

4.1 Experimental Methods

Wavelet packet decompositions by basis search denoted WPDB(S, C) were compared
with each other and with wavelet packet decompositions by matching pursuit denoted
WPDP(O) where O is a Boolean flag for orthogonality. Although not reviewed in de-
tail here, both the nonorthogonal matching pursuit method of Mallat and Zhang [7]
denoted WPDP(0) and the orthogonal matching pursuit method of Pati et al [8] de-
noted WPDP(1) decompose an N -coefficient signal x into an M -packet list Plist usually
for which M << N and for which MWPDP (1) ≤ MWPDP (0). Therefore, to compare the
various decompositions, M was chosen to be that obtained from WPDP(1) which was
then held fixed for all the other decompositions. Thus, the fundamental experimental
paradigm investigated was the comparison of distortions resulting from decompositions
compressed at equal bit-rates.

More precisely, for each Monte Carlo experiment, a test signal and wavelet packet
analysis were chosen, and then for each trial t of the Monte Carlo experiment, the
following steps were performed: 1) white noise was added to the test signal at signal-
to-noise ratio 7; 2) the noisy signal was normalized to energy 1 and considered the
tth-trial signal x to be analyzed; 3) both WPDP(O) were computed with a stopping
criterion of 0.005 for the fraction residual signal energy; 4) all WPDB(S, C) and their
Rlbc and L̂ statistics were computed; 5) all WPDB(S, C) were converted to packet lists;
6) packet lists from WPDP(0) and all WPDB(S, C) were truncated to the MWPDP (1)

largest absolute-value packets; 7) packet amplitudes from the packet lists were coded by
uniform scalar quantization at the rates RPA = {5, 8, 48} bits per symbol code and by
parameterized model coding at the rates RCM = {4, 7} coefficients per linear polynomial
model; 8) signal estimates x̂ were reconstructed from the compressed packet lists; and
9) relative �p-norms of reconstruction errors were computed as measures of distortion
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Dp = ‖x − x̂‖p/‖x‖p for p = {1, 2,∞}. After completion of T trials in the experiment,

means µ̂, standard deviations σ̂, and coefficients of variation ĈV of Rlbc, L̂, and Dp were
estimated.

Experiments were performed on the test signals (artificial “transients” with N = 512
and the spoken word “greasy” with N = 512 segments uniformly sampled from the
original signal with total length 5632) studied in [7]; these signals were kindly provided
by S. Mallat. They were analyzed by WPDB and WPDP using wavelet packet libraries
constructed from boundary-adjusted wavelets [2] of order 2–4 (with interior wavelet
filters of length 4–8) and from circular-periodized wavelets [14] of orders 2–8 (with
lengths 4–16) where all of these wavelets were derived from Daubechies’ orthogonal
least asymmetric family [4]. The test signals were analyzed with L = 5 levels. Monte
Carlo experiments were performed with T = 50 trials on a Pentium class machine with
MATLAB 4.2c. All tables of results are shown for the test signal “transients” analyzed
with circular-periodized wavelets of order 8.

4.2 Experimental Results

Table 2 presents means µ̂ and coefficients of variations ĈV of distortions D2 of recon-
structions for each of the named decompositions with identification numbers listed from
1 to 44. All standard deviations were smaller than the means with coefficients of variation
on the order of 0.02–0.2; this experiment was therefore considered reliable for making
inferences concerning the means to levels of significance determined by corresponding
confidence intervals.

4.2.1 Coding by Parameterized Model versus Scalar Quantization For scalar
quantized coding, a rate of RPA = 8 was sufficient to reduce distortion to the approx-
imate amount obtained with the rate of RPA = 48. Thus, quantization of the retained
M packets at rates of RPA ≥ 8 did not add significant distortion beyond that already
produced by truncation of the packet list to M < N packets. Moreover, reducing the
rate further to RPA = 5 increased the distortion by a relative amount on the order of
only 10%. For parameterized model coding, a rate of RCM = 7 was sufficient to reduce
distortions for many (but not all) of the decompositions to the amounts produced by
scalar quantized coding. For these approximately equal distortions D, estimates for bit
rates were µ̂(RSQ) = 211×5 = 1055 and µ̂(RPM) = 211+7×18 = 337 using µ̂(M) = 211.
Taking for example WPDB(U ,A1) with a value of µ̂(Rlbc) = 1227 (cf. Table 3), then
µ̂(RSQ) + µ̂(Rlbc) = 2282 and µ̂(RPM) + µ̂(Rlbc) = 1564. Thus, parameterized model
coding provided 30% better compression for comparable distortion.

4.2.2 WPDB versus WPDP Table 3 presents results for distortions listed in rank
order 1 ≤ i ≤ 44 with identification numbers and µ̂± σ̂ for compression at rate RPA =
48. For distortions Dp measured by all relative �p-norms, WPDP(O) rank first and
second with no appreciable difference between WPDP(0) and WPDP(1). Since the mean
numbers of flops and mean times in seconds were 1.34× 107 and 172 for WPDP(0) and
6.08×107 and 379 for WPDP(1), there was no advantage gained by the use of WPDP(1)
instead of WPDP(0). And since the range of computational cost for the WPDB(S, C)
varied from 1.54 × 105 flops and 2.45 seconds to 2.50 × 105 flops and 8.42 seconds,
all significantly less than the cost for WPDP(O), there was strong incentive to focus
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attention on WPDB(S, C) that approximate WPDP(O) in minimizing reconstruction
error. Of these, WPDB(U ,A1) and WPDB(U ,W�.5) ranked highest for the D1 and D2

measures while WPDB(U ,W�.5) and WPDB(U , E .5) ranked highest for the D∞ measure.

4.2.3 WPDB(U , Cnon) versus WPDB(U , Cadd) The top-ranking bases WPDB(U , Cnon)
selected with non-additive costs Cnon ranked higher than the top-ranking bases WPDB(U , Cadd)
selected with additive costs Cadd. In particular, the two highest-ranking non-additive
WPDB(U ,A1) and WPDB(U ,W�.5) yielded smaller reconstruction error than did the
two highest-ranking additive WPDB(U , E .5) and WPDB(U , E1). However, the differences
were not statistically significant. Furthermore, WPDB(U ,HS(pD)) and WPDB(U ,F),
which are non-additive and additive respectively, also yielded comparable distortion.6

Thus, there was evidence for choosing between bottom-up bases selected by non-additive
costs (such as the Shannon entropy on probabilities) and bottom-up bases selected by
additive costs (such as the Coifman-Wickerhauser entropy on normalized energies) by
considering computational issues rather than differences in distortion for fixed compres-
sion rates.

4.2.4 WPDB(D, C) versus WPDB(U , C) Thus, restricting attention now to top-
down bases (WPDB with identification numbers {2, 4, 6, . . . , 42}), WPDB(D,A1) and
WPDB(D,W�.5) performed best overall with distortion less than or comparable to that
of WPDB(U ,F) which is the conventional bottom-up Coifman-Wickerhauser best basis.
Moreover, for WPDB(D,A1), µ̂(L̂) = 4.46 was observed, while for WPDB(U ,F), L = 5
was required. This result provided evidence for choosing to use a top-down near-best
basis rather than a bottom-up best basis. However, the savings with WPDB(D,A1)
and its L̂ = 4.46 might not have been considered sufficient. Especially if reduction in
computational cost was viewed as the major issue and differences in distortion viewed
as insignificant within a certain range, then it would have been reasonable to choose
one of the bases with a lower value of L̂. In this situation, a good compromise choice
would have been, say, WPDB(D,N 1

.9) with L̂ = 3.84 which still would have maintained
lower distortion than WPDB(U ,F).

5 Discussion

Although tables of results have been shown consistently throughout this report for the
same example (the “transients” signal analyzed to level 5 with circularly-periodized
wavelets of order 8), analogous results were obtained for all examples (both the “tran-
sients” and “greasy” signals with wavelets of various orders) that were investigated.
These results can be summarized as follows: 1) Orthogonal matching pursuit decom-
positions did not provide any advantage over nonorthogonal matching pursuit decom-
positions despite the large increase in computational cost. 2) Nonorthogonal matching
pursuit decompositions provided lower distortion than did wavelet packet decomposi-
tions, albeit at a much higher computational cost. 3) When minimizing distortion of the
complete basis decomposition is viewed as the primary concern, bottom-up near-best
bases with non-additive costs performed better than or comparably to bottom-up best

6Both the additive WPDB(U ,F) and the non-additive WPDB(U ,HCW) yielded identical results.
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Table 2: µ̂(D2) and ĈV (D2) distortions for reconstructions from decompositions com-
pressed at rate R.

Decomposition ID# RCM = 4 RCM = 7 RPA = 5 RPA = 8 RPA = 48

WPDB(U ,F) 1 .3890 .046 .2344 .046 .1956 .036 .1765 .042 .1762 .042
WPDB(D,F) 2 .4074 .027 .2662 .035 .2093 .030 .1910 .037 .1907 .037
WPDB(U ,G) 3 .2540 .103 .1773 .054 .1761 .035 .1559 .046 .1556 .046
WPDB(D,G) 4 .2907 .124 .1887 .102 .1905 .073 .1710 .086 .1707 .087
WPDB(U , E0.5) 5 .2655 .075 .1760 .045 .1733 .034 .1533 .045 .1530 .045
WPDB(D, E0.5) 6 .2859 .073 .1804 .059 .1826 .057 .1628 .070 .1625 .070
WPDB(U , E1.0) 7 .2674 .050 .1799 .043 .1750 .032 .1554 .042 .1551 .042
WPDB(D, E1.0) 8 .2919 .087 .1861 .080 .1866 .041 .1674 .051 .1671 .051
WPDB(U , E1.5) 9 .2751 .104 .1828 .068 .1782 .037 .1591 .047 .1588 .047
WPDB(D, E1.5) 10 .4014 .068 .2596 .064 .2071 .030 .1886 .036 .1883 .037

WPDB(U ,W�0.5) 11 .2588 .086 .1744 .048 .1724 .035 .1524 .045 .1520 .045
WPDB(D,W�0.5) 12 .2753 .080 .1759 .057 .1780 .050 .1581 .058 .1578 .059
WPDB(U ,W�1.0) 13 .2707 .045 .1807 .051 .1847 .032 .1660 .040 .1657 .040
WPDB(D,W�1.0) 14 .2902 .103 .1916 .094 .1981 .079 .1798 .091 .1796 .092
WPDB(U ,W�1.5) 15 .3773 .108 .2384 .111 .2037 .046 .1851 .054 .1848 .054
WPDB(D,W�1.5) 16 .3823 .115 .2603 .113 .2200 .092 .2024 .109 .2022 .109
WPDB(U ,A0.5) 17 .2484 .097 .1763 .050 .1765 .036 .1563 .047 .1560 .047
WPDB(D,A0.5) 18 .2804 .109 .1842 .080 .1881 .070 .1680 .082 .1677 .083
WPDB(U ,A1.0) 19 .2537 .096 .1741 .048 .1721 .035 .1519 .044 .1516 .044
WPDB(D,A1.0) 20 .2719 .098 .1752 .059 .1776 .056 .1576 .067 .1572 .067
WPDB(U ,A2.0) 21 .2715 .046 .1811 .043 .1783 .033 .1593 .042 .1590 .042
WPDB(D,A2.0) 22 .2907 .037 .1889 .052 .1910 .040 .1723 .049 .1720 .050
WPDB(U ,N 1.0

0.900) 23 .2534 .083 .1755 .054 .1759 .041 .1552 .051 .1549 .051
WPDB(D,N 1.0

0.900) 24 .2892 .123 .1882 .085 .1915 .077 .1715 .090 .1712 .091
WPDB(U ,N 1.0

0.990) 25 .2769 .165 .1962 .134 .1917 .072 .1721 .087 .1718 .087
WPDB(D,N 1.0

0.990) 26 .3638 .122 .2448 .123 .2360 .113 .2193 .131 .2190 .132
WPDB(U ,N 1.0

0.999) 27 .2900 .177 .2038 .139 .1977 .081 .1785 .095 .1782 .095
WPDB(D,N 1.0

0.999) 28 .3741 .096 .2602 .069 .2496 .094 .2340 .109 .2338 .110
WPDB(U ,N 2.0

0.900) 29 .2670 .094 .1776 .041 .1749 .032 .1559 .042 .1556 .042
WPDB(D,N 2.0

0.900) 30 .2868 .080 .1827 .083 .1836 .084 .1646 .100 .1643 .100
WPDB(U ,N 2.0

0.990) 31 .2520 .074 .1764 .054 .1733 .041 .1526 .052 .1523 .052
WPDB(D,N 2.0

0.990) 32 .2799 .107 .1847 .070 .1859 .071 .1656 .084 .1653 .084
WPDB(U ,N 2.0

0.999) 33 .2553 .148 .1831 .094 .1825 .046 .1625 .057 .1622 .057
WPDB(D,N 2.0

0.999) 34 .3189 .162 .2122 .142 .2073 .106 .1886 .125 .1883 .125
WPDB(U ,HS(pS)) 35 .3582 .152 .2253 .119 .1942 .054 .1754 .063 .1751 .063
WPDB(D,HS(pS)) 36 .4021 .052 .2651 .049 .2093 .032 .1908 .038 .1905 .038
WPDB(U ,HS(pD)) 37 .2774 .048 .1863 .048 .1857 .037 .1669 .045 .1666 .045
WPDB(D,HS(pD)) 38 .3332 .096 .2553 .129 .2566 .126 .2421 .143 .2419 .143
WPDB(U ,HS(pTS)) 39 .3651 .181 .2410 .151 .2059 .045 .1874 .051 .1871 .051
WPDB(D,HS(pTS)) 40 .3398 .177 .2258 .166 .2071 .069 .1888 .080 .1885 .081
WPDB(U ,HCW) 41 .3890 .046 .2344 .046 .1956 .036 .1765 .042 .1762 .042
WPDB(D,HCW) 42 .4074 .027 .2662 .035 .2093 .030 .1910 .037 .1907 .037

WPDP(0) 43 .3661 .055 .1920 .078 .1178 .029 .0707 .006 .0699 .002
WPDP(1) 44 .3581 .099 .1638 .127 .1095 .041 .0718 .067 .0695 .004
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Table 3: Rank-ordered µ̂ ± σ̂ statistics for reconstructions from decompositions with
indicated ID number.

Rank D1 D2 D∞ Rlbc L̂

1 44) .0762±.0011 44) .0695±.0003 43) .0360±.0015 7) 1212± 29 38) 1.595±1.206
2 43) .0786±.0009 43) .0699±.0002 44) .0384±.0021 5) 1217± 34 28) 1.980±0.885
3 19) .1692±.0080 19) .1516±.0067 11) .0940±.0106 9) 1221± 31 26) 2.512±0.906
4 11) .1696±.0080 11) .1520±.0068 5) .0940±.0091 21) 1224± 28 16) 3.148±0.769
5 31) .1700±.0089 31) .1523±.0079 29) .0945±.0085 19) 1227± 34 34) 3.418±0.772
6 5) .1707±.0082 5) .1530±.0069 7) .0951±.0109 3) 1228± 34 40) 3.535±0.583
7 23) .1724±.0094 23) .1549±.0079 19) .0951±.0101 11) 1231± 28 39) 3.558±0.263
8 7) .1729±.0076 7) .1551±.0065 9) .0961±.0096 29) 1232± 29 2) 3.592±0.195
9 29) .1731±.0080 29) .1556±.0066 12) .0974±.0100 17) 1233± 40 42) 3.592±0.195
10 3) .1734±.0080 3) .1556±.0072 31) .0975±.0131 13) 1240± 33 36) 3.675±0.173
11 17) .1737±.0080 17) .1560±.0074 21) .0984±.0118 31) 1252± 33 10) 3.680±0.201
12 20) .1747±.0116 20) .1572±.0106 17) .0985±.0121 33) 1264± 49 24) 3.838±0.547
13 12) .1753±.0105 12) .1578±.0093 3) .0989±.0116 23) 1265± 40 14) 3.882±0.656
14 9) .1772±.0086 9) .1588±.0075 20) .0993±.0115 20) 1287± 68 22) 4.032±0.292
15 21) .1773±.0081 21) .1590±.0067 23) .0994±.0107 12) 1290± 69 32) 4.052±0.486
16 6) .1794±.0127 33) .1622±.0092 30) .1015±.0133 1) 1309± 28 4) 4.070±0.583
17 33) .1805±.0099 6) .1625±.0114 13) .1020±.0113 41) 1309± 28 15) 4.075±0.287
18 30) .1810±.0125 30) .1643±.0165 32) .1023±.0135 25) 1315± 85 18) 4.120±0.569
19 32) .1823±.0145 32) .1653±.0140 33) .1033±.0104 6) 1315± 86 27) 4.132±0.491
20 13) .1842±.0079 13) .1657±.0066 37) .1036±.0094 37) 1320± 76 35) 4.190±0.295
21 8) .1848±.0098 37) .1666±.0075 6) .1040±.0105 30) 1321±108 37) 4.215±0.264
22 37) .1851±.0084 8) .1671±.0085 24) .1063±.0147 35) 1321± 61 8) 4.228±0.335
23 18) .1851±.0139 18) .1677±.0139 18) .1068±.0151 8) 1338± 83 30) 4.228±0.602
24 4) .1880±.0152 4) .1707±.0148 8) .1072±.0122 15) 1349± 65 1) 4.312±0.102
25 24) .1886±.0157 24) .1712±.0155 14) .1080±.0149 27) 1356± 96 41) 4.312±0.102
26 22) .1896±.0094 25) .1718±.0150 25) .1086±.0162 18) 1360±122 6) 4.320±0.393
27 25) .1901±.0158 22) .1720±.0085 35) .1088±.0113 32) 1367±103 25) 4.360±0.415
28 35) .1937±.0120 35) .1751±.0111 22) .1089±.0099 4) 1368±121 12) 4.435±0.329
29 1) .1956±.0077 1) .1762±.0073 1) .1091±.0147 22) 1372± 73 20) 4.462±0.339
30 41) .1956±.0077 41) .1762±.0073 41) .1091±.0147 14) 1388±133 23) 4.600±0.156
31 27) .1969±.0180 27) .1782±.0170 4) .1111±.0162 24) 1408±116 33) 4.610±0.200
32 14) .1974±.0134 14) .1796±.0165 27) .1126±.0165 36) 1448± 38 31) 4.640±0.142
33 34) .2033±.0175 15) .1848±.0100 15) .1164±.0156 10) 1448± 41 13) 4.650±0.162
34 15) .2047±.0104 39) .1871±.0096 38) .1202±.0079 2) 1458± 37 29) 4.678±0.145
35 40) .2054±.0110 10) .1883±.0069 34) .1202±.0174 42) 1458± 37 21) 4.680±0.105
36 39) .2060±.0106 34) .1883±.0236 40) .1202±.0147 39) 1459± 52 9) 4.698±0.113
37 10) .2066±.0082 40) .1885±.0152 39) .1212±.0140 40) 1468±117 11) 4.708±0.153
38 2) .2093±.0085 36) .1905±.0072 10) .1216±.0142 34) 1488±142 17) 4.745±0.151
39 42) .2093±.0085 2) .1907±.0071 36) .1245±.0130 16) 1521±136 19) 4.750±0.118
40 36) .2094±.0086 42) .1907±.0071 2) .1245±.0156 26) 1640±163 5) 4.755±0.126
41 16) .2168±.0131 16) .2022±.0220 42) .1245±.0156 28) 1733±166 3) 4.758±0.142
42 38) .2233±.0176 26) .2190±.0288 16) .1273±.0169 38) 1809±222 7) 4.762±0.095
43 26) .2273±.0218 28) .2338±.0256 26) .1329±.0226 44) 1856± 40 43) not applic.
44 28) .2322±.0131 38) .2419±.0346 28) .1338±.0190 43) 1865± 39 44) not applic.
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bases with additive costs, although differences were not significant. 4) When minimiz-
ing computational cost (memory, flops, and time) is viewed as the primary concern,
top-down near-best bases performed better than bottom-up best bases. 5) For compa-
rable distortion, parameterized model coding provided better compression than scalar
quantization coding.

These results were obtained with an experimental paradigm intended to provide
not only a valid comparison between the different complete basis decompositions but
also between them and the matching pursuit decompositions. Thus, it was necessary
to truncate packet lists to a fixed number of packets and then to quantize uniformly
at a fixed bit rate for the remaining packets. This simple paradigm was intended to
reveal some intuition about how various information cost functions might perform in
selecting bases in wavelet packet decompositions relative to the choice function of always
selecting the current largest absolute value packet in each iterative step of the matching
pursuit decompositions. However, a new coding scheme incorporating parameterized
model regression was also introduced. This new coding scheme proved quite successful
and will be explored in future research. In particular, the nonlinear models mentioned
in Section 4 should be investigated. In addition, hybrid schemes could be considered.
For example, using scalar quantization on a small number of the largest absolute-value
packets together with parameterized modeling of the remaining smaller absolute-value
packets might yield better results.

The performance of the different complete basis decompositions in general as well
as in particular in terms of their explicit ordered rankings relative to each other (rather
than to the matching pursuit decompositions) undoubtedly depends upon the applica-
tion including the signal and filter classes as well as the compression and coding scheme
investigated. Therefore, further research should extend these Monte Carlo experiments
to investigate the statistical performance of these methods for the complete basis list
of N wavelet packets (ie., not truncated to M << N with M determined by matching
pursuit decompositions). This approach would eliminate the need to code each packet’s
indices in addition to its amplitude and would therefore enable a full analysis of com-
pression and distortion in the context of more sophisticated bit-allocation methods such
as that of Ramchandran and Vetterli [9]. These methods could also be extended from
1-D signals to 2-D images and other higher-dimensional signals where the advantages
of top-down bases over bottom-up bases become even more important because of the
tremendous savings in computational requirements for memory, flops, and time. Also,
recalling that best bases with additive costs require the use of orthogonal wavelets,
near-best bases with non-additive costs permit the use of biorthogonal wavelets thereby
gaining advantages such as the linear phase response considered important in image
processing applications.

As a final general comment and conclusion, the relative statistical performance of
the different search methods and decision criteria for selecting complete basis decom-
positions in wavelet packet transforms did not appear to yield significant differences in
compression and distortion. Thus, in this sense, the top-down tree searches with ad-
ditive or non-additive information cost functions were just as good as bottom-up tree
searches with additive information cost functions. However, top-down tree searches re-
quired significantly less computation than bottom-up tree searches. If given these results
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and the desire to minimize computational costs, then top-down tree searches should be
performed instead of bottom-up tree searches when selecting wavelet packet decompo-
sitions, except possibly when characterizing unknown signal classes.
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